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INTRODUCTION 

 

Microalgae are photoautotrophic microorganisms that use light as an energy source 
and carbon dioxide as a source of carbon; moreover, they assimilate nutrients such 

as nitrate, ammonia, and phosphate to generate biomass (Fakhri et al., 2017a; Su, 

2021). Microalgae have received attention because of their ability to synthesize a 
valuable biochemical profile, such as lipids, proteins, carbohydrates, and pigments 

(Pignolet et al., 2013). Microalgal biomass is considered as an essential food 

source for humans and feed supplements in the commercial aquaculture industry 
(Nagappan et al., 2021). Despite the essential benefits of microalgae in 

aquaculture and human nutrition, the production of microalgal biomass remains 

economically not competitive (Borowitzka, 2013), with the main problem being 
that the mass scale of photoautotrophic microalgal culture entails a high cost 

regarding the culture medium cost, which represents approximately 30%–40% of 

the total culture cost (Clarens et al., 2010). 
The application of wastewater as a substitute source of nutrients in microalgal 

culture has been considered as a practical strategy for rendering microalgal 

biomass economically viable (Batista et al., 2015; Mohsenpour et al., 2021). 
Wastewater contains nitrogen (N), phosphorous (P), and trace elements, for 

instance iron (Fe), magnesium (Mg), and calcium (Ca), which is vital compounds 

for algal growth (Guldhe et al., 2017; Mohsenpour et al., 2021). Several 
microalgae have been successfully utilized for the biological treatment of 

wastewater (Hawrot-Paw et al., 2020; Nugroho et al., 2014; Trivedi et al., 2019). 

Therefore, the cultivation of microalgae in wastewater is a potentially efficient 
option not only for producing biomass, but also for polishing the wastewater 

inexpensively (Pires et al., 2013; Queiroz et al., 2013). 

Fish processing is an activity that requires a significant volume of water, i.e., 

approximately 11 m3/ton of fish processed, leading to large amounts of wastewater 

(Lim et al., 2003). The release of the liquid from fish processing activities results 

in eutrophication and degraded water quality in water bodies (Ching & Redzwan, 

2017). Fish processing wastewater (FPWW) has a remarkable variety of 

macronutrients (carbon, nitrogen, and phosphorus) and microminerals (Lim et al., 

2003). Moreover, FPWW may be composed of many organic compounds, such as 
carbonaceous nutrients and nitrogen-containing nutrients (volatile amines, 

peptides, and proteins) (Ching & Redzwan, 2017). Specifically, it contains 80–

1,000 mg/L nitrogen, 0.7–69.7 mg/L ammonia (Chowdhury et al., 2010), and 6.1–
13.7 mg/L phosphate (Queiroz et al., 2013). Furthermore, Ghaly et al. (2013) 

reported that fish waste contains 100 ± 42 mg/L iron, 0.17% ± 0.04% magnesium, 

and 0.68% ± 0.11% potassium. These amounts of nutrients in FPWW are possibly 

applicable as an alternative low-cost medium for cultivating microalgae (Lim et 

al., 2003; Queiroz et al., 2013). 

The green microalgae belonging to the Dunaliella genus are widely applied for 

biomass production using wastewater, including municipal wastewater (Liu & 

Yildiz, 2018), aquaculture wastewater (Andreotti et al., 2019), and digested 

poultry wastewater (Han et al., 2019). Because of their high β-carotene, essential 

fatty acid, and protein content, Dunaliella spp. have been successfully applied to 
aquatic animal feed (Morowvat & Ghasemi, 2016; Sui & Vlaeminck, 2020). 

Importantly, these microalgae can also utilize organic carbon in mixotrophic 

metabolism (Fakhri et al., 2021; Morowvat & Ghasemi, 2016). 
Few studies have reported the use of FPWW as a nutrient source for microalgae, 

such as the cyanobacteria Aphanothece microscopica (Queiroz et al., 2013), 

Chlorella vulgaris (Riaño et al., 2011; Trivedi et al., 2019), Microcystis spp., and 
Oocystis spp. (Riaño et al., 2011). The concentration of nutrients in FPWW 

depends mostly on the raw fish material, additives applied, water utilization, and 

unit processes (Chowdhury et al., 2010; Parvathy et al., 2017). In this work, we 
applied wastewater from the boiling process of the fish Decapterus spp. as a 

nutrient. Therefore, we investigated the effect of different concentrations of 

FPWW on the growth, biomass, and biochemical profile, including chlorophyll a, 
β-carotene, protein, and lipid content, of Dunaliella sp. We also analyzed the fatty 

acid profile of Dunaliella sp. in the best concentration of FPWW and Walne 

medium (control). 

 

MATERIAL AND METHODS 

 

Culture of Dunaliella sp. and generation of fish processing wastewater 

 

Dunaliella sp. was obtained from the Institute for Mariculture Research and 
Development, Gondol, Bali, Indonesia. Stock cultures were maintained in Walne 

medium (Table 1) at a temperature of 28 ± 2oC, a salinity of 20 ppt, an initial pH 

of 7.8, and a light intensity of 60 µmol/m2/s under continuous illumination. FPWW 
was acquired from the boiling process of Decapterus spp. in the local Fish 

Processing Center, Muncar, Banyuwangi. 

 
 

Fish processing wastewater (FPWW) has the potential for providing inorganic and organic nutrients, which can be chemically processed 

and produced as a medium for the production of microalgae. Here the effects of FPWW (1, 3, 5, and 7 mL/L) and Walne medium (as a 

control) on the growth, biomass, and biochemical content of Dunaliella sp. were evaluated. An increase in FPWW concentration enhanced 

the growth, biomass production, and pigment and protein content of Dunaliella sp. There was no significant difference in the growth, 

biomass, pigment, protein, and lipid content between the FPWW concentration of 7 mL/L and Walne medium (control) (P > 0.05). 

Interestingly, significant 4.4- and 4.1-fold increases in monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs), 

respectively, were observed for Dunaliella sp. cultured in FPWW at 7 mL/L vs. Walne medium. The authors conclude that treated FPWW 

can potentially be used as a medium for the growth of microalgae. 
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Table 1 Walne medium composition 

No. Stocks per 100 mL 

1. Trace metal solution (TMS)  

 ZnCl2 (g) 2.1 
 CoCl2.6H2O (g) 2.0 

 (NH4)6Mo7O24.4H2O (g) 0.9 

 CuSO4.5H2O (g) 2.0 
Made up to 100 mL with distilled water 

2. Nutrient solution per liter 

 FeCl3.6H2O (g) 1.3 
 MnCl2.4H2O (g) 0.36 

 H3BO3 (g) 33.6 
 EDTA (g) 45.0 

 NaH2PO4.2H2O (g) 20.0 

 NaNO3 (g) 100.0 
 TMS (mL) 1.0 

Made up to 1 L with distilled water 

 

Pretreatment of the fish processing wastewater 

 

The preparation of wastewater as a growth medium was started by filtration 

through a Whatman filter paper GF/C with a pore size of 2.5 µm. The medium was 

then fermented with Bacillus subtilis at a density of 1  108 cells/mL. The 

fermentation process was managed for 48 hours under aerobic conditions, to 

reduce the level of organic compounds in the wastewater. Next, the medium was 
autoclaved at 121°C for 15 min to prevent contamination with microorganisms. 

After sterilization, the nutrient characteristics of the medium were determined. The 

chemical characteristics of the FPWW stock medium are presented in Table 2. 
 

Table 2 Characterization of the fish processing wastewater 

Parameter Average value 

NO3
− (mg/L) 30.30 

NH4
+ (mg/L) 29.84 

PO4
3− (mg/L) 20.14 

TOC (mg/L) 2,697.69 

 

Experimental medium culture conditions 

 

Dunaliella sp. in the logarithmic phase was used as the inoculum. Cells were 

cultivated in 350 mL of medium in 500-mL Erlenmeyer flasks containing different 

concentrations of wastewater (1, 3, 5, and 7 mL/L, v/v) in natural seawater. The 
experiment was performed in triplicate. The FPWW stock was enriched with 

essential nutrients, including ZnCl2 (21 g/L), (NH4)6Mo7O2.4H2O (9 g/L), 

CuSO4.5H2O (20 g/L), MnCl2.4H2O (0.36 g/L), H3BO3 (33.6 g/L), and EDTA (45 
g/L), to support the growth of microalgae. Dunaliella sp. was also grown in Walne 

medium (Table 1) at a concentration of 1 mL/L, which was used as the control 

condition. Cultures were started at an initial density of 30  104 cells/mL. The cells 

were cultured for 6 days under aeration with ambient air at 0.5 mL/min and 

irradiated under continuous light (60 µmol/m2/s) at 28 ± 2°C and a salinity of 20 

ppt. 
 

Biomass determination 

 

Biomass production was evaluated after 6 days of cultivation. A filter paper 

(Whatman GF/C, 90-mm diameter) was dried for 2 h at 105°C until the weight was 

stable [A]. A sample containing 25 mL of the microalgal suspension was filtered, 
and the resulting filtered biomass was cleaned with distilled water and dried for 2 

h at 105°C. Finally, the dry biomass was cooled down in desiccators and 

subsequently weighed [B]. The calculation of the microalgal biomass (dry weight, 
g/L) was performed using the following formula (Fakhri et al., 2021b; Janssen et 

al., 1999): 

 

Biomass production (g/L) = (B−A)  1,000/Sample volume   (1) 

 

Protein, chlorophyll a, and β-carotene determination 

 

Protein, chlorophyll a, and  β-carotene quantification were determined  

spectrophotometrically (GENESYSTM 10S UV-Vis, Thermo Scientific, USA). 
Protein determination was carried out according to the Lowry assay (Lowry et al., 

1951) and calibrated using bovine serum albumin (BSA) standards. A BSA 
concentration range of 0–2,000 µg/mL (R2 = 0.98) with absorbance readings at 750 

nm was applied. The protein content (%) was evaluated using the following 

equation: 
 

Protein content (%)  = C  100     (2) 

               DW 
 

where C is the protein concentration (µg/mL) measured by the Lowry assay and 

DW is the dry weight of the biomass (mg/L). 

-carotene content was determined at a wavelength of 450 nm and analyzed as 

stated in Morowvat & Ghasemi (2016). In addition, absorbance readings at 652 

and 665 nm were applied to the determination of chlorophyll a content, which was 
analyzed as reported by Ritchie (2006). 

 

Chlorophyll a (μg/mL)= 16.5169  A665 – 8.0962  A652                                      (3) 

 

β-carotene (µg/mL)  = 25.2  A450                                (4) 

 

Lipid extraction 

 

Eighty milligrams of freeze-dried cells were added to 8 mL of CHCL3/CH3COH 
(1:2 v/v) and stirred into the mixed sample with a solvent for about 30 min at 30°C. 

The sample was collected by centrifugation at 4,000 rpm for 10 min (MicroCL 21R 

Microcentrifuge, Thermo Scientific). The supernatant was added to another flask 
and the extraction and separation steps were repeated twice, as described above. 

The supernatant containing crude lipids was combined for further evaporation 
(IKA® RV10 rotary evaporator). After evaporation, 0.5 mL of CHCl3/CH3OH (2:1 

v/v) was added and the mixture was transferred to Eppendorf tubes for further 

centrifugation at 12,000 rpm for 10 min. The supernatant was added to a vial that 

had been previously weighted, for further evaporation. 

 

Fatty acid analysis 

 

Hydrolysis 

 
The sample (10 mL) was added to 10 mL of HCl and heated in a water bath at 80°C 

until boiling. Then, after the sample had cooled down, the mixture was added to 

25 mL of diethyl ether/petroleum ether (1:1), vortexed, and precipitated. The top 
layer of oil was collected and dried with N2 for later use in the methylation process. 

Methylation 

A methanolic natrium solution (1.5 mL) was added to the dried lipid fraction, 
which was prepared as described above. The mixture was covered and heated at 

60°C for 10 min with shaking. Subsequently, the mixture was cooled down, mixed 

with 2 mL of methyl formate boron trifluoride, and heated for 10 min at 60°C. 
After the mixture was cooled down, 1 mL of heptane and 1 mL of concentrated 

NaCl were added to it. The top layer was transferred to an Eppendorf tube for fatty 

acid methyl ester (FAME) analysis. 
Gas chromatography conditions 

A gas chromatography Shimadzu 2010 instrument equipped with a cyanopropyl 

HP-88 column (length, 100 m; i.d., 0.25 mm; film thickness, 0.20 µm) and a flame 
ionization detector at a temperature of 260°C was used for FAME determination. 

The sample (1 µL) was administered and the total retention time was 55 min. The 

fatty acid peak was determined by comparing the relative retention times of FAME 
with an authentic standard solution (Supelco 37 Component FAME mix). 

 

Statistical analysis 

 

Statistical analysis was performed using the normality test, homogeneity of 

variance, and one-way ANOVA with a 95% confidence level (α = 0.05). Statistical 
analyses were performed using the SPSS 16.0 software. 

 

RESULTS AND DISCUSSION 

 

Effect of FPWW on the growth and biomass production of Dunaliella sp. 

 

In the preliminary study, we cultivated Dunaliella sp. cells on only FPWW 

medium without enriched with additional nutrients as mentioned in the Materials 

and Methods. We found that the cell growth was inhibited probably due to the 
insufficient of some nutrients (data not shown). Then, we decided to add some 

essential nutrients (Zn, Mo, Cu, Mn, Bo, and EDTA) which are probably lacks in 

the FPWW medium. FPWW-enriched medium (hereafter called as FPWW) was 
then applied for the whole experiment. The growth characteristics of Dunaliella 

sp. cultured in the presence of different concentrations of FPWW (1, 3, 5, and 7 

mL/L) and Walne medium are depicted in Figure 1 and Table 3. A similar growth 
pattern was observed in FPWW and Walne medium, with the stationary phase 

being attained on day 6. The lack of a lag phase was noticed on FPWW and Walne 

medium, which confirmed that the cells adapted well (Figure 1). This phenomenon 
agrees with that reported by Trivedi et al. (2019), who noted that Chlorella 

vulgaris NIOCCV cultivated on fish processing-plant wastewater did not 
experience a lag phase because the inoculant cells were provided in the exponential 

phase. Interestingly, Table 3 showed that there was no significant difference 

between Walne and 7 mL/L of FPWW medium in terms of cells growth. 
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Figure 1 Cell density of Dunaliella sp. under Walne and various FPWW 

concentrations. The cross, open circle, open square, open triangle, and open 

diamond describe control, and 1, 3, 5, and 7 mL/L FPWW, respectively.  
 

Table 3 Maximum specific growth rates, doubling time, and maximum cell density 

of Dunaliella sp. 

Experimental 

condition 

Maximum 

specific growth 

rate (/day) 

Doubling 

time 

(days) 

Maximum cell 

density 

( 106 cells/mL) 

Control 1.198 ± 0.284c 0.579 ± 0.255 8.667 ± 0.306c 

1 mL/L 0.921 ± 0.192a 0.753 ± 0.217 4.400 ± 0.173a 

3 mL/L 1.010 ± 0.043a 0.686 ± 0.043 4.833 ± 0.404a 

5 mL/L 1.100 ± 0.080b 0.630 ± 0.073 7.433 ± 0.252b 

7 mL/L 1.168 ± 0.114c 0.593 ± 0.095 8.700 ± 0.557c 

Note: The same superscript indicates the absence of a significant difference; different 

superscripts indicate significant differences; 95% confidence level (α = 0.05) 

 

The biomass yield of Dunaliella sp. grown on FPWW and Walne medium is 
depicted in Figure 2. There was no significant difference (P > 0.05) in biomass 

production of Dunaliella sp. between FPWW 7 mL/L and Walne medium. The 

biomass production of Dunaliella sp. cultivated on FPWW at 7 mL/L reached 
0.755 g/L, which was significantly higher than that of cells cultivated on FPWW 

at 1 mL/L (0.329 g/L), 3 mL/L (0.431 g/L), and 5 mL/L (0.611 g/L), but only 

slightly higher compared with cells cultivated on Walne medium (0.717 g/L). In 
addition, we found that increasing the wastewater concentration led to an increase 

in the growth and biomass production of Dunaliella sp. Similarly, Trivedi et al. 

(2019) observed that enhancing the concentration of fish wastewater from 5% to 
30% resulted in an increase in biomass productivity from 67.07 ± 0.22 mg/L/d to 

258.30 ± 1.04 mg/L/d. Moreover, those authors reported that the microalgae 

cultivated in fish wastewater medium produced a higher biomass compared with 
cultivation in the F/2 medium. Similar findings of an increase in the biomass yield 

of microalgae in various wastewaters compared with the standard culture medium 

have been reported extensively (Hawrot-Paw et al., 2020; Ramanna et al., 2014). 
 

 
Figure 2 Biomass production of Dunaliella sp. under Walne medium as a control 

and different concentrations of FPWW (1, 3, 5, and 7 mL/L) 

We hypothesized that the biomass yield of microalgae was remarkably dependent 

on the concentration of wastewater in the medium particularly the presence of 

organic carbon in the medium. In this work, the amount of organic carbon in 

FPWW stock medium (2,697.69 mg/L) was comparable to the study from 

Cristóvão et al. (2014). According to our calculations, the 7 mL/L FPWW's initial 

organic content was 18.88 mg/L. It has been noted that adding a small quantity of 
organic carbon to the medium can enhance the growth and biomass of microalgae 

(Cheirsilp & Torpee, 2012; Kim et al., 2013). The utilization of wastewater 

containing organic carbon in microalgal cultivation has remarkably improved both 
photosynthesis and oxidative phosphorylation; therefore, it may be to the factor 

underlying the high yield of microalgal biomass (Yu et al., 2022). In addition, 
ammonium (NH4

+-N) is the preferred nitrogen source for microalgae, therefore we 

speculated that its availability in FPWW enhanced the biomass of microalgae 

especially under mixotrophic condition (Li et al., 2019). Conversely, the lower 
biomass production observed at lower wastewater concentrations is probably 

attributable to the small amount of nutrients available in the medium (Trivedi et 

al., 2019).  
 

Effect of FPWW on the protein content of Dunaliella sp. 

 

The protein content of Dunaliella sp. cultivated under Walne and FPWW media is 

reported in Figure 3. The highest protein content (49.438%) of Dunaliella sp. was 

detected in Walne medium (control), whereas the lowest protein content (43.640%) 
was observed in 1 mL/L FPWW. An increasing concentration of FPWW led to an 

increase in the protein content of Dunaliella sp., with the maximum protein content 

of 48.940% detected at 7 mL/L FWPP (Figure 3). Moreover, the protein content of 
microalgae did not differ significantly (P > 0.05) between the control and 7 mL/L 

FPWW. There was a 10.8% increase in protein content in cells grown in 7 mL/L 

FPWW vs. 1 mL/L FPWW. Shanthi et al. (2021) proposed that the high protein 
content observed in fish wastewater medium is related to the availability of organic 

nitrogen, such as amino acids and short peptides, which trigger nitrogen 

assimilation in microalgae. Some studies have revealed that the concentration of 
nitrogen in the medium has a significant effect on the accumulation of proteins in 

microalgae (Li et al., 2016; Markou, 2015). In addition, the higher protein content 

detected at a higher FPWW concentration could be attributed to the fact that the 
higher concentration of nitrogen increased nitrogen assimilation, thus promoting 

protein synthesis (Fakhri et al., 2021; Markou & Georgakakis, 2011).  

 

 
Figure 3 Protein content of Dunaliella sp. under Walne medium as a control and 

different concentrations of FPWW (1, 3, 5, and 7 mL/L) 

Effect of FPWW on the chlorophyll a and β-carotene content of Dunaliella sp. 

 

The chlorophyll a and β-carotene content of Dunaliella sp. cultured in control and 

FPWW media is reported in Figure 4. Dunaliella sp. cultured in control Walne 

medium and FPWW at 7 mL/L did not exhibit a significant difference (P > 0.05) 
in chl a; however, it was significantly higher than that observed at 1, 3, and 5 mL/L 

FPWW. An increasing FPWW concentration enhanced the chl a content of 

Dunaliella sp. Similarly, Shanthi et al. (2021) reported that enhancing the fish 

waste concentration up to 0.5% increased chl a production in Spirulina platensis. 

In this study, the chl a content exhibited a similar pattern to that of the microalgal 

growth, biomass production, and protein content. This result agrees with Shanthi 

et al. (2021), who reported that the chl a content is linearly correlated with 

microalgal growth and protein content. Moreover, Danesi et al. (2011) and Fakhri 

et al. (2017b) revealed that chl a production is highly correlated with microalgal 
growth, because the synthesis of chlorophyll is part of its primary metabolism. The 

lowest chl a content was detected in the medium containing 1 mL/L FPWW, 
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probably because of the lower nitrogen concentration and assimilation that 

occurred at low FPWW concentrations. 

Figure 4 also reveals a similar trend for the chl a and β-carotene content in 

Dunaliella sp. among all treatments. This result agrees with Liu et al. (2021), who 

reported a linear correlation between chlorophyll and carotenoid content in 

Scenedesmus obliquus. Those authors also revealed that the composition and 
quantity of pigments are highly affected by the culture conditions.  

 

 
Figure 4 Chlorophyll a and β-carotene content of Dunaliella sp. grown in Walne 

medium (control) and in different concentrations of FPWW 

 

Table 4 Fatty acid profile (relative %) and lipid content of Dunaliella sp. cultured 

in control Walne and 7 mL/L FPWW media 

Fatty acid profile 
Relative % 

Control 7 mL/L FPWW 

C4:0 2.645 ± 0.177 1.740 ± 0.113 

C6:0 0.225 ± 0.035 0.515 ± 0.007 

C10:0 0.410 ± 0.113 0.710 ± 0.028 

C12:0 1.845 ± 2.298 0.170 ± 0.014 

C14:0 2.885 ± 2.185 1.250 ± 0.014 

C14:1 3.135 ± 05.02 2.955 ± 0.063 

C15:0 - 0.890 ± 0.254 

C16:0 
72.490 ± 

3.168 
40.550 ± 0.579 

C16:1 2.740 ± 0.170 5.860 ± 1.004 

C17:0 2.345 ± 2.185 1.370 ± 0.191 

C18:0 3.29 ± 0.212 2.610 ± 0.297 

C18:1 - 7.215 ± 0.144 

C18:2 - 2.460 ± 0.296 

C20:0 - 0.710 ± 0.141 

C18:3 - 1.000 ± 0.014 

C20:1 - 2.900 ± 0.056 

C22:0 3.330 ± 4.455 2.900 ± 0.113 

C20:3 0.660 ± 0.255 1.635 ± 0.007 

C23:0 - 1.375 ± 0.035 

C20:5 3.995 ± 1.039 10.930 ± 0.395 

C24:1 - 6.980 ± 0.007 

C22:6 - 3.275 ± 0.021 

SFAs (%) 89.465 54.79 

MUFAs (%) 5.875 25.91 

PUFAs (%) 4.655 19.3 

Lipid content (%) 6  0.28 6.1  0.49 

 

Effect of FPWW on the lipid content and fatty acid profile of Dunaliella sp. 

 

The lipid content of Dunaliella sp. grown in control medium and 7 mL/L FPWW 

is reported in Table 4. The difference in lipid content observed between the control 

(6%) and 7 mL/L FPWW (6.1%) media was insignificant (P > 0.05). The lipid 
content detected in this study is in accordance with that described by Almutairi 

(2020), who reported a lipid content of 5.88%  0.85% for D. salina grown in a 

standard medium. In addition, the difference in lipid content detected here between 

the control and FPWW media is consistent with Shanthi et al. (2021), who showed 

that the lipid content of S. platensis was almost equal between the control and fish-

waste media. 

The composition of fatty acids of D. salina cultivated in Walne medium and 7 

mL/L FPWW is shown in Table 4. The highest fatty acid content in both conditions 

was detected for palmitic acid (C16:0). However, a remarkable decrease in C16:0 
was observed in microalgae grown in FPWW (40.550% ± 0.579%) compared with 

Walne medium (72.490% ± 3.168%). Ferreira et al. (2019) explained that C16:0 

is the most abundant saturated fatty acid (SFA) in microalgae. Moreover, Abd El 

Baky et al. (2014) and Hosseinzadeh Gharajeh et al. (2020) reported that 

palmitic acid was the most abundant fatty acid in Dunaliella strain. Interestingly, 
here, several unsaturated fatty acids, including oleic acid (C18:1), linoleic acid 

(C18:2), linolenic acid (C18:3), and docosahexaenoic acid (C22:6), were only 

produced in Dunaliella sp. cultivated in FPWW medium. In addition, the 
eicosatetraenoic acid (C20:5) content increased by 2.7-fold in Dunaliella sp. grown 

in FPWW compared with Walne medium. The assessment of the overall fatty acid 

composition revealed a 4.4- and 4.1-fold enhancement in monounsaturated fatty 
acids (MUFAs) and polyunsaturated fatty acids (PUFAs), with a 1.6-fold decrease 

in SFAs detected in microalgae cultivated in FPWW vs. Walne medium. We 

hypothesized that the shift in fatty acid content in FPWW was caused by organic 

carbon in the medium. Increasing PUFA concentration in the presence of organic 

carbon is consistent with Liu et al. (2021), who found that adding glucose and 

maltose enhanced C16:3 and C22:6 content in Micractinium reisseri much more 
than photoautotrophic culture. Chia et al. (2013) and Ferreira et al. (2019) 

suggested that the fatty acid composition and their degree of saturation in 

microalgae are species specific and dependent on the cultivation medium, culture 
conditions, nutrient concentrations, and other environmental factors.  

 

CONCLUSION 

 

In conclusion, our study demonstrated that different doses of treated FPWW 

remarkably affected the growth, biomass, chlorophyll a, β-carotene, and protein 
content of Dunaliella sp. Finally, there were no differences in the growth, biomass; 

and pigment, protein, and lipid yield between the FPWW concentration of 7 mL/L 

and Walne medium. The cultivation of cells with FPWW results in a higher 
production of unsaturated fatty acids in comparison to the use of Walne medium. 

Therefore, the utilization of FPWW-enriched medium can be considered as a 

prospective nutrient source for microalgal culture. 
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