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INTRODUCTION 

 

Genetic transformation - the technique by which DNA molecules are introduced 

into plant cells – is gaining popularity as a means of improving agriculture, 
acquiring sustainability, and preserving the future (Rakoczy -Trijanowska 2002; 

Rivera et al. 2012). It took a long time, but the first attempts at genetic plant 

transformation were made on maize about half a century ago Coe and Sarkar 

(1966). Restriction enzymes were used to make recombinant DNA molecules in 

the early 1970s (Meselson, Yuan 1968; Smith et al. 1970). This was followed by 

the generation of genetically stable transformed plants (Chilton et al. 1977) like 

tobacco (Bevan 1983 ; Herrera-Estrella 1983), potato Chakravarty et al. 

(2007), tomato Horsch et al. (1985), petunia Fraley et al. (1983), rice (Yang et 

al. 1988; Zhang et al. 1996), grape Perl et al. (1996), cassava Zhang et al. (2003), 
millets Antony et al. (2009), and chrysanthemum Chávez et al. (2002) in the 

1980s. In 1994, tomato was the first crop to be approved as the first transgenic to 

enter markets of the United States by the Food and Drug Administration (FDA). 
Genetically modified (GMo) crops now account for 7% of global agricultural land 

and are a key source of income for many countries Darbani et al. (2008). More 

than half of the kinds generated through traditional breeding Godfray et al. (2010) 
have been supplanted by genetically modified (GM) plants with specific traits. 

Furthermore, breakthroughs in the usage of genetically modified plants to 

manufacture novel recombinant proteins with pathogen-free status and cheaper 
manufacturing costs have given the pharmaceutical industry a fresh lease on life, 

allowing corporations to scale up production (Ma JKC et al. 2003; Fischer et al. 

2004). Furthermore, as evidenced by the numerous patents linked with the subject, 
current plant genetics has already begun to play a critical role in the generation of 

biofuels and has had a significant biotechnological impact Chen et al. (2010). 

Various techniques are employed to introduce DNA into the cellular structures of 
several organisms, including plants, fungi, bacteria, mammals, and other species. 

The revolutionary finding by (Griffith, 1928) regarding genetic transformation 

had a profound impact on the field of molecular biology. However, it was not until 
the groundbreaking work of Meselson and Yuan (1968) that the first instance of 

generating recombinant DNA from Escherichia coli using restriction enzymes, 

known as biochemical scissors, initiated the process of cell genetic transformation. 
For genetic transformation of cells, recombinant DNA fragments must be 

synthesized, transferred into the cell via membrane permeabilization, integrated 
into a chromosome, and then maintained and replicated (fig.2). It usually entails 

clone multiplication in vitro, selecting appropriate promoters for a specific gene, 

over-expressing activator genes, removing epigenetic silencing, introducing 
heterologous genes, generating strains with novel properties, improving 

bioinformatic random mutagenesis programs, identifying sequences that confer 

antibiotic resistance (selective markers), and producing enzymes that produce a 
unique characteristic not found in the wild type of strain Rivera et al. (2012). 

New ways for an efficient, repeatable, and safe delivery system require more 

attention to increase levels of output in terms of obtaining transformants. 

Transgene integration has also been used to boost the metabolic process' 

capabilities by promoting the expression of specified proteins. Furthermore, 

genetic engineering has attempted not only the introduction of exogenous genes, 
but also the deletion of genes to reduce metabolic fluxes in alternative pathways 

and shift fluxes to the product-forming route (Fischer, et al. 2000; Meyers et al. 

2010). Antibodies, which are part of our immune system, can be synthesized by 
plants by altering them with the proper genes Vaccines against a variety of 

diseases; including germs that cause diarrhea (Moeller and Wang 2008) can also 

be created.  
Transformation can occur in a variety of ways, depending on the species (Sawahel 

and Fukui K 1995). A major obstacle in the transformation is: the highly protective 

hydrophobic layer of the cell membrane that acts as a barrier to any transformation 
in cell genetic makeup along with DNA being highly charged macromolecule, its 

diffusion over the cell membrane is quite a stumbling problem. 

The two most popular methods for genetic transformation are indirect and direct 
transformation Niazian et al. (2017). The term "indirect" refers to bacteria-based 

biological techniques (fig.1). These are based on Agrobacterium tumefaciens-

mediated transformations and protoplast transformations using cell wall-
destroying enzymes. Direct techniques use physical and chemical ways to 

penetrate the cellular wall. Artificial or non-biological methods that alters and 

transfer genes from one organism cells to another via physical mode includes 
biolistic transformation, micro- injection and macro-injection, electroporation, 

agitation using glass beads, ultrasound waves and shockwave mediated, vacuum 

infiltration, silicon carbide whisker, laser microbeams. (Table 1) compares all 
physical methods those are also discussed briefly in this review report. Chemical-

Advancements in gene transfer technology have indeed opened up exciting possibilities for more effectively manipulating the genetic 

makeup of live organisms, ranging from microorganisms to plants and animals. Direct and indirect transformations are the two basic types 

of gene transfer techniques. Indirect method comprises Agrobacterium mediated method as it involves intermediate host between gene of 
interest and target and this method is most opted one out of all present. Direct gene transformation methods, on the other hand, do not 

involve the use of an intermediate host organism. Instead, they rely on physical means to transfer genes between cells. Biolistic 

transformation uses high-velocity particles to deliver DNA into target cells, while microinjection and macroinjection involve the direct 
injection of DNA into cells. Protoplast fusion combines the genetic material of two different cells by fusing their protoplasts. Natural 

methods for gene transfer encompass mechanisms that occur naturally in various organism, includes transposition, conjugation, phage and 

retroviral transductions and bacterial transformation. Chemical techniques utilize chemical agents to facilitate gene transfer, such as 
calcium phosphate-mediated transformation, polyethylene glycol (PEG)-mediated transformation, DEAE (Diethylethanolamine)-

Dextran-mediated transformation. Genes can be also being transferred using electrical techniques such as electroporation and 

electrofusion.  
 Crop improvement and trait improvement are now being hastened by the fast-rising number of sequenced plant genomes, information 

from functional genomics data to understand gene function, innovative gene cloning, and tissue culture techniques. Despite being 

indispensable, its progress is still hindered by the fact that many plant species and agricultural genotypes exhibit low transformability or 
are resistant to established tissue culture and regeneration conditions. Here, we review the techniques employed in plant transformation 

and provide a concise overview of their evolution in agricultural crops, from their first inception to present time. 
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based techniques include calcium phosphate co-precipitation and lipofection, PEG 

mediated, and Diethyl amino ethyl (DEAE) dextran mediated (Table 2).  

 

 

 

 
Figure 1 Various methods of gene transformation in plants

 

Identification/ characterization of novel genes to be transferred 

 

(Desirable genes located in wild species, unrelated 
plant species) 

 

 

 

Gene construct preparation 

 

(Gene isolation, molecular cloning by selecting appropriate binary vector, promoter, marker and designing them together to obtain competency of transfer) 

 
 

 

Transfer of gene into target plant 

(Insertion of the cloned construct into host cells of the target plant) 

 

 
 

Identification of transformant/ Molecular analysis 

(Marker genes aid in identifying transformed cells and further regenerating them into whole plantlet, gene specific PCR, qRT-PCR, and hybridization techniques) 
 

 

 
Obtained plantlets compared with wild type (non-transformed) 

(Trait specific tests 

 
Figure 2 Generalized steps of genetic transformation 
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Table 1 Comparison of the direct physical methods of genetic transformation of plants (Rivera et al. 2012) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Comparison of direct chemical methods of genetic transformation of plants 

METHOD PROCEDURE  ADVANTAGE  DISADVANTAGE 

 

Calcium-phosphate 

coprecipitation 
 

 

 
Liposome- mediated 

 

 
 

 
PEG Mediated 

 

 
 

 

 
Diethyl amino ethyl 

(DEAE)dextran 

mediated 
 

 

 

Foreign DNA can also be carried with Ca ++ 

ions released inside the cell in the form of 
calcium phosphate because of calcium 

precipitation. 

 
Gene-carrying liposomes can be used to fuse 

with protoplasts to transfer genes. 

 
 

 
Plant protoplasts can be formed by treatment 

with PEG in the presence of divalent cations.  

 
 

 

 
Transformation of cells with DNA 

complexed with the high molecular weight 

polymer diethylaminomethyl (DEAE)-
dextran is used to obtain efficient transient 

expression. 

 

Comparatively easy to optimize for 

variety of plasmids. Cost effective. 
 

 

 
DNA is protected from environmental 

influences and damage. Moreover, it is 

stable and can be stored in liposomes for 
some time before transfer. 

 
It is simple, efficient and can process 

many samples simultaneously. 

Achieve transformed cell populations 
with high viability and division rates. 

 

 
Simple and inexpensive, more sensitive, 

and applicable to different cell types 

 

 

Low transfection efficiency, typically 

ranging between 1% and 10%. 
 

 

 
Difficulty associated with the 

regeneration of plants from transformed 

protoplasts. 
 

 
Regeneration of fertile plants from 

protoplasts is problematic for some 

species. The DNA used is also 
susceptible to degradation and 

rearrangement. 

 
Does not produce stable transformants. 

Toxic to cells at high concentrations. 

Transfection efficiency varies by cell 
type 

 

Indirect gene transfer or vector Mediated 

 

Agrobacterium tumefaciens, a naturally occurring organism with genetic 

engineering capabilities, possesses a plasmid referred to as a Ti-plasmid, which is 
accountable for the initiation of tumorigenesis. The transfer of a specific segment 

known as T-DNA (transferred DNA) from this plasmid to the genome of infected 

plant cells has been observed to induce the formation of tumours in plants Zaenen 

et al. (1974). The utilisation of Ti-plasmid as vectors for the delivery of 

advantageous new genes into target cells is facilitated by its distinctive property. 

In order to replace undesirable DNA sequences, the T-DNA borders of the Ti-
plasmid are utilised to clone both a plant selection marker gene, such as nptII which 

provides resistance to kanamycin, and the gene of interest, such as the Cry genes 

METHOD  PROCEDURE             ADVANTAGES       DISADVANTAGES 

 

 

Electroporation 

 

 

Biolistic 

 

 

 

 

 

 

 

Microinjection 

 

 

 

Macroinjection 

 

 

 

Vacuum    

infiltration 

 

 

 

Silicon carbide 

whisker-

mediated 

 

 

 

Laser 

microbeams 

 

 

Ultrasound 

 

 

 

Shock waves 

 

 

 

 

An electrical impulse induces membrane 

permeability and provides a local driving 

force for ionic and molecular transport 
through the pores. 

 

Small particles coated with genes are 
accelerated to penetrate the cell wall. 

 

 
 

 
 

 

Direct DNA transfer into plant cells by 
injection pipette. 

 

 

Injection of genetic material with a 

hypodermic syringe. 

 
 

The vacuum creates a negative pressure 

that contracts the spaces between the cells 
of plant tissue, allowing the invasion of 

bacteria such as Agrobacteria. 

 
Silicon carbide fibers are mixed with tissue 

and DNA suspensions in a vortex and allowed 

for insertion by abrasion. 
 

 

 
A laser microbeam opens self-repairing 

holes in the cell wall that allow DNA 

delivery. 

 

Acoustic cavitation introduces DNA 

molecules into cells, temporarily altering 
the permeability of the cell membrane. 

 

Cell permeabilization occurs through shock 
wave-induced cavitation. 

 

 
 

All types of plant protoplasts and cell 

types can be used, simple, fast, and 

cheap. 
 

 

Easy to perform, no cell wall 
pretreatment is required. Independent 

of cell physiology. Transformation 

with multiple transgenes is possible. 
 

 
 

 

Very high transformation efficiency. 
Allows introduction of plasmids and 

whole chromosomes.  

 

High stability and reproducibility. 

 

 
 

Easy and fast. medium efficiency. In 

vitro plant regeneration has 
transformed many independent plants. 

 

 
Easy, fast, and cheap. Can be used for 

various plants without limitations. 

 
 

 

 
Laser properties for use as optical 

tweezers coupled to a suitable 

microscope. 

 

It is highly efficient, moderately 

costly, and can be used with a wide 
variety of cell types. 

 

It is rapid, easy to perform, highly 
efficient and reproducible, requires no 

enzyme cocktails, and can be used to 

transform multiple cell types. 

Lengthy protocol. It depends 

on the electrophysiological 

properties of the plant. Low 
transformation efficiency. 

 

Expensive.  A stable supply of 
consumables is required. DNA 

can be damaged. It can 

generate multiple copies of the 
introduced gene, leading to 

various disadvantages. Low 
transformation efficiency. 

 

Costly, tedious, and slow. 
 

 

 

Only some parts of the plant 

are transformed. very low 

efficiency. 
 

Some Agrobacterium strains 

are unable to infect certain cell 
types and risk multiple copies 

of the introduced gene. 

 
Damage to cells impairs their 

ability to regenerate. Potential 

for injury from inhaling fibers. 
Very low efficiency (lower 

than biolistic). 

 
High cost (expensive 

equipment required), and 

laborious. 

 

May damage the cells by 

breaking their membrane. 
 

 

Shock waves generators for 
this purpose are not in the 

market and experimental 

equipment is relatively 
expensive. 
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for lepidopteron insect resistance (Gelvin and S.B 2017). The success of 

transformation is significantly influenced by the choice of explants and their 

capacity for totipotency. In order to proceed with the experiment, it is customary 

to obtain leaf discs for dicots or embryogenic calluses for monocots, such as 

cereals. These plant tissues are subsequently inoculated with an Agrobacterium 

containing a recombinant disarmed Ti-plasmid vector. Subsequently, the afflicted 
tissue can undergo co-cultivation for a duration of 2-3 days on a medium conducive 

to shoot regeneration. This period facilitates the transfer of T-DNA and foreign 

genes. Subsequently, in order to specifically eliminate non-transformed tissues, the 
explants, which are plant tissues such as leaf discs or calli, are transferred onto a 

selection medium containing a lethal dosage of an antibiotic (e.g., kanamycin or 
hygromycin). The inclusion of a bacteriostatic agent, such as the antibiotic 

cefotaxime, in the selection medium is an essential element in the process of 

Agrobacterium mediated transformation. The process of hardening or 
acclimatisation of regenerated plants involves the transplantation of mature plants 

into soil over a span of roughly 3 to 4 weeks. Following a duration of 3-5 weeks, 

the shoots that have undergone regeneration from leaf discs are subsequently 
relocated to a medium that promotes root formation.  

Molecular techniques, such as polymerase chain reaction (PCR) and hybridization 

methods (dot blot, southern blot), can be employed to validate the existence of 
transgenes within the presumed transgenic plants. A roadmap has been shown in 

(fig. 3) illustrating stepwise Agrobacterium mediated transformation protocol for 

transgenic development. Till now the process of plant genetic transformation is 
largely dependent on the utilization of the bacterial pathogen Agrobacterium 

tumefaciens as an effective mechanism for introducing desired genes into a 

recipient plant. Within the cellular organelle known as the plant nucleus, the DNA 

that has been transferred possesses the ability to integrate itself into the genetic 

material of the plant, so ensuring its inheritance by subsequent generations (Gelvin 

and S.B 2003). This process is widely known for stable transformation. In an 

alternative scenario, the exogenous DNA has the capacity to temporarily persist 

within the nucleus without undergoing integration into the host genome. However, 
it can still undergo transcriptional processes to generate gene products that are 

deemed advantageous (referred to as transitory transformation). This technique 

offers several advantages in the context of genetic modification. These advantages 
encompass the precise transfer of DNA fragments with well-defined ends, limited 

rearrangement of genetic material, the ability to transfer relatively large DNA 
segments, the integration of a small number of gene copies into the chromosomes 

of plants, and the production of transgenic plants that exhibit high quality and 

fertility. Nevertheless, the process of transformation does not consistently result in 
occurrences that are characterized by a high degree of clarity or simplicity. The 

utilization of Agrobacterium-mediated gene transfer is experiencing continued 

growth and expansion. It has emerged as a valuable technique in the investigation 
of gene function and promoter analysis. Novel vectors engineered for the purpose 

of transporting significantly large DNA segments have been successfully created 

and subjected to thorough experimentation. The utilization of techniques aimed at 
the specific integration of transgenes into the genomes of higher plants has 

garnered significant interest in the scientific community. Several technologies have 

been developed to produce transgenic plants without the use of selection markers, 
aiming to enhance public acceptance of biotechnology goods. 

 

 

 
Figure 3 Plant transformation process using Agrobacterium method includes the following steps 

 

Due to the widespread interest in altering genomes of nearly all crops which was 

not possible with the Agrobacterium mediated method alone and complications 
such as formation of repetitive sequences of transgenes, specific rearrangements, 

integration of DNA segments unrelated to the intended target, and the potential for 

unstable expression of transgenes. While a considerable number of transgenic 
plants often exhibit positive traits during initial testing, the buildup of non-

desirable plants becomes notable after repeated rounds of characterization and 

screening, therefore consequently additional improvements in each of the 
aforementioned processes are highly desirable. Hence direct methods of gene 

transfer were also studied in parallel, starting since 1980s (Neumann et al. 1982; 

Potter 1988). It involves several method for incorporating multiple copies of a 

chosen gene into the genome at random locations with a low level of cellular 

damage. Their drawbacks include issues with plant regeneration and a low level of 
transgene transient expression. These are electroporation (Murray et al. 1991), 

biolistic, vacuum infiltration, ultrasound, silicon carbide fibers, microinjection, 

macroinjection, and laser microbeams are examples of direct methods now in use 
or being studied (Danilova et al. 2007; Bajaj and Mohanty, 2005; Spörlein et al. 

1991).  This paper places significant focus on doing a comprehensive examination 

of direct approaches. 
 

Direct gene transfer methods 

 

Physical methods 

 

Electroporation 

 

Electroporation is an electrical method of transformation in which the electric pulse 

is applied, and transient pores are produced in the plasma membranes of 
prokaryotic and eukaryotic cells Rolong et al. (2018). The protoplasts of plant in 

suspended in an appropriate ionic buffer which contains a recombinant linearized 

plasmid DNA. Then this mixture is exposed to either a low voltage for long pulses 

or high- voltage for short pulses for the standardized number of cycles. This results 

in the inducement of transient pores in the plasma membrane through which the 
DNA molecules get inserted. The transformed protoplasts now regenerated 

complete plantlets. 

 
Biolistic: particle bombardment 

 

Biolistic (biological ballistics) also known as particle gun -mediated gene transfer, 
is the method of directly bombarding DNA fragments onto cells using an 

instrument called a gene gun. Particle bombardment is the most effective method 
out of all other methods of this category for gene transfer, and formation of 

transgenic plants Klein et al. (1987). This method is versatile as it is successfully 

being used for DNA transfer in animal and microbial cells. The microprojectile 
bombardment method was initially named as biolistic by its inventor Sanford 

(1987) Boynton et al. (1988). The gene gun works by accelerating high-density 

carrier particles with a diameter of around two microns, coated with desired genes, 
able to penetrate through cells to insert the DNA inside. It was created in 1987 at 

Cornell University to exhibit the genetic modification of cereals, but it can be 

applied to all plant species irrespective of being dicot or monocot as restricted with 
vector mediated protocol. The process can be used to transform chloroplasts and 

nuclei also includes cells, protoplasts, structured tissues like meristems (a 

collection of undifferentiated cells in active mitosis), embryos, and calluses 
(vegetable tissue growing in an erratic pattern). 

The biolistic approach was initially created with the intention of transforming 

monocotyledons, a class of flowering plants that are resistant to transformation by 
Agrobacterium. According to a comparison between Agrobacterium and biolistic 

employing fluorescent in-situ hybridization, Agrobacterium offers considerable 

benefits over biolistic Synder et al. (1999) in terms of transformation efficiency, 
transgene copy number, expression, inheritance, and physical structure of the 

transgenic locus. However, biolistic is the most widely used direct method for 

genetically altering plants because it can be applied to a wide range of species, 
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subcellular organelles, microbes, and even animal cells, has a quicker processing 

time, incurs little expense in the creation of transgenic plants, and is 

straightforward for the introduction of multiple genes or chimeric DNA (DNA 

from two different species). Additionally, it is independent of the 

electrophysiological characteristics of the cell, such as the electrical potential and 

the structural elements of the cellular membrane Sanford et al. (1993) and does 
not require a vector with a specific sequence. However, each biological target used 

requires a different set of transformation parameters to be optimized Sanford et 

al. (1993). The main biolistic applications in plant research are transient gene 
expression investigations, the development of transgenic plants, to improvement 

in terms of resistance/tolerance against various insect-pest or diseases, nutrition 
enhancement etc. The technique has a transformation efficiency of 0.002, with a 

genetic translational degree ranging from 17 to 36% of relative activity during 

events in a single bombardment, and up to 70% of activity in the genetic expression 
during events in several bombardments Oard et al. (1990). Several plants have 

been genetically altered by particle bombardment. (Table 3). 

 
Comparing transgenic rice produced using Agrobacterium and biolistic techniques 

Dai et al. (2001) reveals that Agrobacterium-mediated transformation results in a 

higher percentage of transgenic plants with intact copies of foreign genes, 
particularly non-selection genes, more stable transformation, and better fertility, 

whereas biolistic has a higher efficiency with a wide range of gene expression. The 

presence of multiple copies of introduced genes, which can result in a variety of 
unfavorable side effects like gene silencing or altered gene expression, is the 

limiting factor for the use of the gene gun (Rakoczy, 2002). It's important to 

consider the high cost of gene gun accessories. 
 

Microinjection 

  
Microinjection, a technology also used for plants, is the most efficient way to 

genetically alter animal cells (Davey et al. 1989). Microinjection has also been 

used for several plant species. The procedure entails injecting DNA precisely and 
directly into the plant cell using a glass microcapillary injection pipette (Morikawa 

and Yamada 1985; Crossway et al. 1986). The method is laborious, sluggish, and 

necessitates a pricey micromanipulator to immobilize the cells using a holding 
pipette and moderate suction. However, it is incredibly effective, exceedingly exact 

in terms of delivery, and permits the introduction of complete chromosomes in 

addition to plasmids into plant cells (Korzh and Strahle 2002). The efficiency of 

the final transformation was around ten times lower than that of biolistic Holm et 

al. (2000). However, this strategy has been proposed as a potential approach for 

stable plant transformation used in various types (Jones-Villeneuve et al. 1995). 
In many animal systems, DNA microinjection is the preferred technique for stable 

transformation. Plant cell microinjection is technically more challenging than 

animal cell microinjection for several reasons Crossway et al. (1986):  

› Cell Wall Barrier: The cellulose-based stiff cell walls that surround plant 
cells serve as a barrier to microinjection. The cell wall must be pierced by 

the needle without the cell being harmed. 

› Cell Size Variability: Plant cells come in a wide range of sizes, making it 

difficult to choose the right ones for microinjection. 
› Low Throughput: Because microinjection requires a lot of manual labour 

and has a low throughput, it is less suitable for applications that call for the 

delivery of molecules to a lot of cells. Cunha et al. (2018). 

› Cell Viability: Cell viability and the success of the transformation might be 
impacted by cell damage caused by the microinjection technique. 

There are some efforts made to optimize plant cell microinjection: 

Design of the Needle: Scientists have created specialized microneedles that are 

sharp enough to pierce the cell wall while causing the least amount of harm to the 

plant cell. These needles are frequently constructed of silicon or glass Cao et al. 

(2015). 

 

Optimal Injection Pressure: To successfully distribute molecules without 

endangering cell viability, injection pressure must be carefully controlled. The 
pressure settings must be optimized. 

 

Microinjection Systems: By enhancing throughput and reproducibility, 
microinjection systems, such as automation and robots, have made it possible to 

carry out injections on a larger scale. 

 
Cell Preparation: To make plant cells more receptive to microinjection, a portion 

of the cell wall is frequently removed using an enzyme treatment. To increase the 

success of injections, cell preparation procedures have been improved Shou et al. 

(2004). 

 

Co-injection Methods: To track the effectiveness of injection and minimize cell 

harm, some researchers have looked into co-injecting molecules with markers 

(such as fluorescent dyes) Torres et al. (2005). 

 
While DNA microinjection has been successful in achieving transformation in 

certain algal species, these techniques are mostly utilized for plant transformation. 

Therefore, there is a need for more robust, less challenging, and highly efficient 

approaches that can generate a higher number of transformed cells within a given 

timeframe. The utilization of isolated protoplasts possessing partially regenerated 

cell walls has served as a model system for the development of novel techniques 

in microinjection into plant cells (Khan and Kishwar, 2009). Protoplast 

immobilization techniques have been employed, including the use of holding 

capillaries, adhesive compounds such as polylysine, or embedding in a media 
containing either agarose or alginate Kost et al. (1995). Various fluorescent dyes, 

including Lucifer yellow, have frequently been employed to facilitate the 

visualization of the injection procedure throughout the injection process. Novel 
single cell culture techniques have been developed to facilitate the proliferation of 

individual protoplasts that have been introduced by injection. According to Kost 

et al. (1995) successful stable transformation has been achieved using DNA 

microinjection into protoplasts. By employing a proficient protoplast embedding 

and culture system, researchers were able to generate stably transformed tobacco 
lines. Recent advancements have been made in the cultivation of isolated plant 

zygotes, as per the latest findings. The technology of gene transformation using 

microinjection in separated zygotes holds significant potential as a crucial method 
in plant systems. Nevertheless, the achievement of efficient microinjection into 

plant cells remains limited to a few numbers of systems and necessitates the 

expertise of highly skilled individuals (Neuhaus and Spagenberg, 1990). In order 
to fully harness its potential, it is imperative that the process undergoes 

technological refinement.   

 

Macroinjection 

 

Macroinjection is the term for the use of a hypodermic syringe to inject inheritable 
substances like immature embryos, meristems, immature pollen, germinating 

pollen, etc. Zhou et al. (1983). The risk of producing chimera plants with only a 

portion of the original plant altered is this technique's principal drawback. 
However, it is possible to later produce transformed plants with single cell origins 

from this chimera plant. Different species have been treated using this method. 

Touraev el al. (1997) Additionally, compared to biolistic, the ultimate 
transformation efficiency was nearly ten times lower. This strategy has been put 

out as a potential strategy for stable plant transformation, nevertheless. 

 

Vacuum infiltration 

 

Applying a vacuum for a predetermined period is another method to mediate the 

incorporation of Agrobacterium for plant transformation. Physically, a vacuum 

creates a negative atmospheric pressure that causes the air spaces between plant 

tissue cells to narrow, allowing harmful bacteria to infiltrate the intercellular spaces 
Tague et al. (2006). There is less air space within the plant tissue the longer the 

vacuum is in place and the lower the vacuum pressure. The infiltration medium, 

which contains the infectious transformation vector, might migrate into the plant 
tissue because of an increase in pressure. It is important to monitor how long a 

plant part or tissue is exposed to vacuum because prolonged exposure can lead to 

hyperhydricity Subramanyam et al. (2011). The first report on the transformation 
of Arabidopsis using Agrobacterium-mediated transformation and vacuum 

infiltration was published in 1993. Since then, numerous advancements have been 

made to create protocols and implement changes in various plants Oliveria et al. 

(2009). Recent successful production of a plant-derived vaccine under the current 

Good Manufacturing Practice (cGMP) regulations for human clinical trials has 

shown the effectiveness of this method Charity et al. (2002). One of the 
Agrobacterium-based transformation technologies, vacuum infiltration has been 

utilized successfully to create transgenic bean, Arabidopsis, coffee, cotton, and 

wheat plants. By enhancing Agrobacterium cells' ability to penetrate deeper into 

the layers of plant tissue, this procedure improves the efficacy of gene transfer. 

Through vacuum infiltration, Medicago truncatula (Barrel medic) can achieve up 

to 76% transformation efficiency Tague et al. (2006). Vacuum infiltration-
facilitated transformation has several benefits, including: 

a) the ability to produce numerous independently transformed plants from a single 

plant, 
b) reduction in somaclonal variation due to the absence of tissue culture,  

c) the potential for high throughput testing due to the speed of the procedure, d) the 
technique may also be helpful for transforming plants that are resistant to plant 

tissue culture and regeneration. 

 
Silicon carbide whisker-mediated transformation (SCMT) 

 

It is one of the latest developed methods for the purpose of delivering DNA into 
plants. Fibers made of silicon carbide have unique physical and chemical 

properties that allow them to pierce cells without damaging them. This approach 

has the benefits of being quick, affordable, simple to set up, and efficient on a range 
of cell types. Low transformation efficiency, cell damage, and potential health risks 

from inhaling the fibers are some of its drawbacks (Komatsu et al. 2006; 

Kaeppler et al. 1990, 1992; Wang et al. 1995). The efficiency of SCMT depends 
on the fiber size, parameters of vortexing, shape of the vessels used, plant species 

and explant and characteristics of the plant cells and especially the thickness of the 

cell wall (Racoczy-Trijanowska, 2002). There are a number of practical 
applications of SCMT which have gained success including rice (Komatsu et al., 
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2006), tobacco Kaeppler et al. (1990) maize (Kaeppler et al. 1992; Wang et al. 

1995; Petolino et al. 2009), wheat Brisibe et al. (2006). In some cases, SCMT has 

been shown to be as effective as biolistic, so it represents another choice for 

soybean embryogenic tissue transformation Terakawa et al. (2005). Additionally, 

wounding with silicon carbide fibers can increase the frequency of Agrobacterium-

based transformation (Singh and Chawla, 1999). Limitations of the Silicon 
Carbide Whisker-Mediated Transformation at the Present Time (Frame et al. 

2000; Dhakarey et al. 2019; Zhang et al. 2006): 

 

› Safety Issues: Safety is a key drawback of silicon carbide whisker-mediated 

transformation. Researchers and personnel involved in the procedure may be 

exposed to health risks due to silicon carbide whiskers, which are known to be 
dangerous when inhaled. Experiments may become more expensive and 

complex because of the strict safety precautions and protective gear that must 

be used. 

› Low Transformation Efficiency: The comparatively low transformation 
efficiency of silicon carbide whisker-mediated transformation is one of its 

main drawbacks. This technique can result in a low percentage of successfully 

converted cells and ineffective introduction of foreign DNA into plant cells. 
When trying to create transgenic plants for study or commerce, this might be 

a considerable disadvantage. 

› Tissue Specificity: This technique's tissue specificity is yet another drawback. 

Certain plant tissues and species may respond better to silicon carbide 
whiskers than others. This limits the number of possible uses and the variety 

of plant species that can be effectively modified using this technique. 

› Plant Cell Damage: During the transformation process, plant cells may 

sustain mechanical damage due to the physical properties of silicon carbide 
whiskers. This may result in cell death or other unforeseen consequences in 

the changed cells, which could be harmful to the transformation's overall 

success. 

› Limited DNA Cargo: The delivery of comparatively little amounts of DNA 
is frequently accomplished using silicon carbide whisker-mediated 

transformation. It might not be appropriate for complicated genetic 
engineering projects that frequently call for introducing huge DNA 

constructions or many genes into plant cells. 

 
The Prospects and Improvements that can be made to overcome limitation in 

SCMT (Hiei et al. 1994; Jones& H. D 2005): 

 

› Process Optimization: To increase its effectiveness and lessen the possibility of 
cell injury, scientists are still working to optimize the silicon carbide whisker-

mediated transformation process. This entails studying different whisker length 

and shape variations and improving the transformation conditions. 

› Combination with Other approaches: Silicon carbide whisker-mediated 
transformation may be improved and some of its drawbacks may be solved by 

combining it with other genetic engineering approaches like CRISPR-Cas9. This 

might make plant genome editing more accurate and effective. 

› Species-Specific Protocols: By adapting the procedure to plant species or tissues, 
one may be able to get around problems with tissue specificity and increase 

transformation efficiency. This topic is still being researched. 

› Advances in nanotechnology: Advances in nanotechnology could result in the 

creation of more precise and effective delivery methods that could increase the 
efficacy and accuracy of genetic transformation in plants, potentially making 

silicon carbide whiskers obsolete. 

 
Ultrasound-mediated transformation 

 
One of these potential methods is sonication, or the use of ultrasonic waves. 

Because sonoporation increases membrane permeability Wyber et al. (1997) and 

makes it easier for macromolecules to enter cells, it opens the possibility of non-
invasively introducing molecules like DNA to the interior of cells for therapeutic 

applications. Explants are suspended in a few milliliters of sonication media in a 

microcentrifuge tube while using this procedure. Following the addition of plasmid 
DNA (and optionally carrier DNA), the samples are quickly mixed and prepared 

for sonication. Finally, the cells are moved to brand-new growth medium. The 

effectiveness of uptake in this instance was determined by sound frequency and 
exposure time Liu et al. (2005). When compared to protoplast sonication, stable 

transformation of tobacco by sonication of leaf fragments required an ultrasound 

treatment that lasted 1500–2000 times longer Zhang et al. (1991). Potato tuber 
disc ultrasonication is another illustration of intact tissue sonication-based 

transformation (Sawahel, 1996). The above-mentioned Sonication-Assisted 

Agrobacterium-mediated Transformation (SAAT) in plant cells or tissues is the 
primary goal of the ultrasonic technology (Trick and Finer 1997; Horsch et al. 

1985; Weber et al. 2003).  

SAAT may be helpful for changing woody trees, especially Eucalyptus species 
Monica et al. (2004). Germinating seeds and seedlings were treated to in-planta 

based transformation by SAAT, which improved the efficiency of transformation 

González et al. (2002). Recently, genetic materials were introduced using a laser 
beam. Laser-mediated transformation works by creating brief, self-healing holes 

(0.5 m) in the cell wall and membrane using a focused laser microbeam. Therefore, 

cells might easily take up foreign DNA Badr et al. (2005). The method must be 

further evaluated for both the various experimental settings and plant species since 

it was just recently established. 

 

Laser microbeams 

 

Laser-mediated transformation works by creating self-healing holes (about 0.5 m) 

in the cell wall using a focused laser microbeam. In less than five seconds, these 

holes seal once more. The buffer and DNA enter the cell through the membrane's 
brief opening. Laser pulses can also be used to perform membrane perforation 

(laser poration), which can be paired with laser-facilitated partial cell wall removal. 
Therefore, cells might easily take up foreign DNA. Plant cells, subcellular 

structures, and even individual DNA molecules can all be precisely and gently 

treated with laser light. For this, a suitable laser system that can function as an 
optical tweezer with the right microscope is required, such as nitrogen lasers, 

excimer pumped dye lasers, or titanium-sapphire lasers Greulich et al. (2000). A 

continuous IR laser, such as a diode or diode-pumped Nd-YAG laser, makes up an 
optical tweezer. Cell fusion using a UV laser microbeam has been selectively 

induced, and DNA has been added to isolated chloroplasts. The fragility of many 

species' protoplasts, which are unable to regenerate into plants, is a drawback of 
the previously mentioned direct approaches for plant transformation. Even more 

challenging is the introduction of DNA into organelles like chloroplasts Weber et 

al. (1988). Laser microbeams can be used to transfer genetic material into cells to 
get around these issues. 

Even though many cells can be irradiated using this technique, it is not widely used 

since it requires expensive equipment to focus a laser beam on diameters of the 
order of 100 nm (Lin and Ruddle 1981). However, after DNA insertion, the cells 

fully recover. It also needs to be done carefully because laser radiation can harm 

biological material. For this reason, it's important to channel the beam and 
precisely and consistently control its energy and pulse duration. The strategy must 

be further evaluated for various experimental setups and plant types (Hoffmann 

1996). 
 

Shock wave-mediated transformation 

 

Shock wave generators designed for extracorporeal shock wave lithotripsy (SWL), 

orthopedics and other fields of medicine (Loske, 2011), have been used 

successfully for cell transfection and transformation Jagadeesh et al. (2004). In 

this system microsecond pulses with a peak positive pressure within the range of 

30 to 150 MPa, of 0.5 and 3 µs, followed by a tensile pulse of up to −20 MPa and 

duration of 2 to 20 µs has maintained. To produce underwater shock waves for 
biomedical applications, electrohydraulic, piezoelectric, or electromagnetic 

devices have been designed (Cleveland and McAteer, 2007).  

 
 Chemical methods 

 

Cells or protoplasts can be manipulated to take up DNA using chemicals such as 
Polyethylene glycol (PEG), also the most used chemical for DNA insertion. It aids 

in precipitation of DNA, which can then be engulfed by the cells through the 

process of endocytosis. 
 

Calcium phosphate precipitation method for gene transformation 

 

This method is based on the precipitation of plasmid DNA and calcium ions by 

their interaction. In this method, the precipitates of calcium phosphate and DNA 

being small and insoluble can be easily adsorbed on the surface of cell. This 

precipitate is engulfed by cells through endocytosis and the DNA gets integrated 

into the cell genome resulting in stable or permanent transfection (Kwon and 

Firestein 2013). 
 

Liposome mediated gene transformation or Lipofection 

 

Liposomes are like small lipid bags full of plasmids. Induction of these liposomes 

can be exhibited by PEG in order to fuse with protoplasts for gene transfer. 
Liposomes can be preloaded with DNA by two methods- membrane fusion and 

endocytosis thus forming DNA- liposome complex. This complex fuses with the 

protoplasts to release the contents into the cell. Animal cells, plant cells, bacteria, 
yeast protoplasts are susceptible to lipofection method. Liposomes can be 

classified as either cationic liposome and anionic or pH sensitive (Deshyes et al. 

1985). 
 

(i) Positively charged liposomes 

 
Cationic liposomes or positively charged liposomes are associated by electrostatic 

interactions to the negatively charged DNA molecules forming a stable complex. 

Neutral liposomes are generally used as DNA carriers and helpers of cationic 
liposomes due to their non-toxic nature and high stability in serum. 

 

(ii) Negatively charged liposomes 
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Generally, pH-sensitive, or negatively charged liposomes are not efficient for gene 

transfer. They do not form a complex with it due to repulsive electrostatic 

interactions between the phosphate backbone of DNA and negatively charged 

groups of the lipids. Some of the DNA molecules get entrapped within the aqueous 

interior of these liposomes. 

In this technique, protoplasts transform via endocytosis of liposomes in these serial 
steps:  

 

 
Step-1 adhesion of the liposomes to the protoplast surface,  

Step-2 fusion of liposomes at the site of adhesion and  
Step-3 release of plasmids inside the cell.  

Successful transformation based on this system was reported for tobacco 

Dekeyser et al. (1990), wheat Zhu et al. (1993) and potato (Sawahel, 2002). 
In the recent case frequency of stable transformation was 7% of Calli 

regenerating from protoplasts. This method is relatively non-toxic Antonelli 

and Stadler (1990), is simple to perform with readily available chemical 
reagents, is highly reproducible and efficient also requires no sophisticated 

equipment (Antonelli and Stadler 1990; Felgner et al. 1987). 

Transformation of intact YACs into plant cells was achieved via lipofection-
like particle bombardment. A lipofection-PEG combination method was 

more efficient than each one of them separately Wordragen et al. (1997). It 

is determined lipoplex size is a major factor determining lipofection 
efficiency which large lipoplex particles showed, in general, higher 

lipofection efficiency than small particles Almofti et al. (2003). 

 

Polyethylene glycol (PEG)-mediated transfer 

 

Only protoplast is suitable for this technology. Polyethylene glycol serves as a 
chemical. It promotes endocytosis, which results in DNA absorption. Protoplasts 

are maintained in polyethylene glycol (PEG) solution using this technique. PEG is 

removed after protoplasts have been exposed to exogenous DNA while still 
containing other chemicals, and the intact protoplasts are then cultivated to create 

cells with walls and colonies one at a time (Jogdand 2006). The transformants are 

then obtained under selection pressure. Polyethylene glycol is the most significant 
molecule that can start the transfer of a gene through the protoplast membrane. 

Because there is a straightforward transformation technique available, it has grown 

to be the most used. A technique was created to immobilize DNA molecules using 

calcium alginate micro beads in addition to polyethylene glycol treatment Liu et 

al. (2004). 

Only cells without cell walls can drive DNA molecules into the host genome. The 
linearized plasmid DNA containing the foreign gene is combined with molecules 

of the bare plant protoplasts. In place of Ca2+ ions, the two are combined in a 

transformation medium that is rich in Mg2+ ions. Next, 20% polyethylene glycol 
(PEG) solution is added. PEG concentration is lower and Ca2+ concentration is 

higher following the treatment. It encourages transformation frequency. 

Although the PEG mediated transformation is very generalized and 
straightforward, but it has these drawbacks: 

1) Delicate cells cannot be used while some cells can be so swiftly pass through 

the procedure. 
2) Because many treated cells lack transfer DNA, this procedure is not ideal. 

3). Usually, foreign DNA is broken down in the cytoplasm before it enters the 

nucleus. 
 

Diethyl amino ethyl (DEAE) dextran mediated transformation 

 

This method was initially reported by Vaheri and Pagano (1965) for enhancing 

the viral infectivity of cells but later adapted as a method for plasmid DNA transfer 

Lalani and Misra (2011). A soluble polycationic carbohydrate called diethyl 
aminoethyl dextran (DEAE-dextran) encourages connections between DNA and 

the cell's endocytosis machinery. According to this approach, the positively 

charged DEAE-dextran and negatively charged DNA interact electrostatically to 
create aggregates that eventually take the form of a polyplex. The DEAE - 

dextran/DNA complex is generated when there is a little excess of DEAE - dextran 
in the mixture. When introduced to the cells, these complexes attach to the 

negatively charged plasma membrane and are ingested by the process of 

endocytosis. Osmotic shock with DMSO or glycerol can enhance complex DNA 
transport with DEAE-dextran. For a particular cell line, several variables such as 

cell count, polymer concentration, transfected DNA concentration, and 

transfection time should be tuned. Stable transformants cannot be produced using 
this method. 

 

Agricultural crops improvement by genetic transformation 

 

Rice – A monocot crop 

 

Moreover, one third of the world's population relies mostly on rice for dietary 

requirements. The need to boost global food production is necessary to feed the 

expanding global population. Even though the global food supply has more than 
doubled since the green revolution, but still, we need to work on increasing both 

the quantity and quality. The modification of young rice embryos using Biolistic 

proved successful (Christou et al. 1991). Reports were also made regarding the 

transformation of indica and javanica rice in addition to other japonica rice 

(Burkhardt et al. 1997; Zhang et al. 1996). Fujimoto Patnaik and Khurana 

(2001) were the first to engineer japonica rice through electroporation with 

modified ∂-endotoxin gene (cry) from Bacillus thuringiensis. Transgenic rice 
shows enhanced resistance to insects than its wild counterpart. Later, by particle 

bombardment (Wu¨nn et al. 1996) was able to create the transgenic indica rice 

cultivar IR58 that expresses a synthetic cry IA(b) gene driven by the 35S promoter. 
Song et al. successfully cloned the rice Xa21 gene, which provides resistance to 

the blight disease Xanthomonas oryzae (Song et al. 1995). The cloned gene was 
used to create transgenic rice plants that exhibited high levels of resistance. The 

gene has been discovered to work against several isolates (Wang et al. 1996). 

Shimada et al. created transgenic rice plants that contained a 35S promoter-
controlled antisense construct of the rice waxy gene, which codes for granule-

bound starch synthase (Shimada et al. 1993). The amylose content of grain starch 

was significantly reduced in the seeds of these plants. Most intriguingly, rice was 
modified with the cDNA coding for daffodil’s phytoene synthase, specialized 

enzymes involved in carotene (provitamin A) biosynthesis in plants, to give rice 

endosperm the potential to produce precursor (-carotene) of vitamin A. 
The increase of phytoene synthase in the endosperm of these transgenic plants 

suggests that the provitamin A biosynthesis pathway can be engineered in non-

photosynthetic, carotenoid-deficient tissue. Agrobacterium-mediated 
transformation of rice with all the genes required for provitamin A accumulation 

in transgenic rice seeds was recently described by the same group. 

By electroporating protoplasts, Hayakawa et al. inserted the coat protein (Cp) gene 
of the rice stripe virus into two kinds of japonica rice, leading to notable levels of 

virus resistance in the transgenic plants (Hayakawa et al. 1992). By these studies 

it has comprehended that particle bombardment of rice offers a superior alternative 
to Agrobacterium for transgenic development also it can be expected that bacteria 

or virus-based rice transformation methods will become obsolete in future due to 

its associated drawbacks Bajaj and Mohanty (2005).  
 

Maize 

 
The world's most important grain crop is maize. It is also the crop for which 

extensive use of genetic engineering has been made to enhance its numerous 

features. Particle bombardment, protoplast transformation, Agrobacterium-

mediated, in planta transformation, and other techniques for gene transfer have all 

been explored and refined throughout time. The very first successful 

transformation in maize was performed by uptake of naked DNA through 
electrochemical method in Black Mexican Sweet maize protoplast (Fromm et al. 

1986). Firstly, a robust biolistic transformation protocol was developed by 

Songstad et al. (1996) in Hi-II genotype. Since then, various studies have reported 
successful use of biolistic mode of transformation in maize (Klein et al. 1989; 

Gordon-Kamm et al. 1990; Genovesi et al. 1992; Frame et al. 1994; Wan et al. 

1995; Pareddy et al. 1997). A silicon carbide fiber-mediated DNA delivery device 
has been shown to alter maize Bullock et al. (2001). Initially, it was supposed that 

Agrobacterium mediated technique could not work for monocot plants. The major 

breakthrough in maize transformation came from Ishida et al. (1996), modifies the 
traditional protocol such as heat pre-treatment, addition of copper and silver ions 

to co-cultivation media, increase in co-cultivation period etc. Now these have been 

used for developing commercial transgenic events in maize. Although, maximum 
commercial transgenic events are developed by particle bombardment, followed 

by Agrobacterium-mediated transformation also including with genome editing 

methods Kang M et al. (2022). 

 

Wheat  

 
Without a doubt, it is a staple crop of the human diet and one of the world's primary 

food crops. Over the years, there has been a lot of focus on improving the genetics 

of wheat to increase grain output, reduce crop loss due to unfavorable weather 
circumstances, and create resistance to numerous pests and viruses. More recently 

several studies have reported efficient Agrobacterium transformation of many 
wheat cultivars (Ishida et al. 2015; Richardson et al. 2014; Wang et al. 2019; Ye 

X et al. 2023). The cultivar Fielder, a model variety in Agrobacterium 

transformation, declared by the group of researchers from Japan Tobacco 
Company, where the detailed protocol “Pure Wheat” was developed with 

transformation efficiency of 40–90%. In vitro methods such as in planta approach 

have shown its potential in overcoming the problem of genotype dependency and 
other associated hurdles of bacteria-based transformation system. In contrast to 

vector-based protocols of gene transfer, microprojectile bombardment mode to 

deliver DNA is also to be mentioned as the field of wheat transformation. It was 
subsequently transformed by the invention of a technology for delivering genes 

into intact plant tissues by bombarding them with DNA-coated gold or tungsten 

particles. Sincere attempts have been made in recent years to genetically alter 
wheat using various foreign genes that are significant from an agronomic 

viewpoint (Altpeter et al. 1999; Bieri et al. 2000). Since the first successful 

genetic transformation of wheat by Monsanto using biolistic protocol was 
conducted at Florida University, USA (Vasil, 1992), several reports of transgenic 
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event in wheat has been reported (Bieri et al. 2003.; Wiley et al. 2007; Fahmy et 

al. 2013) . 

 

Tobacco 

 

In transgenic research, tobacco has emerged as a model plant system because its 
molecular genetics are well understood, its genomic mapping is almost complete, 

genetic transformation is simple to accomplish, tobacco plants thrive in vitro and 

in greenhouse environments, and tobacco yields a lot of biomasses. Proteins and 
enzymes can be extracted, processed, and employed in the production of 

pharmaceuticals and other valuable industrial compounds, such as biopolymers, by 
using tobacco plants as living factories to create the necessary quantities of these 

substances Jube and Borthakur (2007). Reports on the incorporation of genes 

introduced in tobacco plant are plenty via liposomes mediated Deshayes et al. 

(1985), Silicon carbide fiber-mediated DNA delivery systems (Kaeppler et al. 

1992) Agrobacterium mediated (Niedbala et al. 2021; Leng et al. 2020). 

 
Potential applications of GMOs  

 

Genetic engineering in agriculture indeed offers a wide range of benefits that have 
the potential to transform our food production systems and address critical global 

challenges. Genetic engineering allows for the development of crop varieties that 

are tailored to specific environmental conditions, such as high salinity or drought. 
This means that crops can be grown in regions where they were previously 

unsuitable, expanding agricultural possibilities and increasing food production. 

GMOs can also aid in preserving biodiversity, reduce soil and water pollution, and 
promote ecosystem health by reducing the usage of chemical pesticides and 

herbicides. 

Genetic engineering can be used to enhance the nutritional content of crops, 

addressing malnutrition and dietary deficiencies. It is also being applied to the 

production of biofuels and bioplastics, providing renewable and environmentally 

friendly alternatives to fossil fuels and traditional plastics. In summary, genetic 

engineering in agriculture offers a multifaceted approach to addressing global 

challenges related to food security, environmental sustainability, and human 
health. While it presents numerous opportunities, it is essential to carefully 

consider ethical, social, and regulatory aspects to ensure responsible and 

sustainable deployment of these technologies. The ongoing research and 
development in this field hold great promise for meeting the needs of a growing 

global population and mitigating the impact of environmental stressors on our food 
supply. 

For analysing multiple independent transgenic lines to ensure the stability and 

reproducibility of the introduced traits is detrimental as several genetic factors that 
influence the expression of newly inserted genes in transgenic plants. These are 

epigenetic effects, gene silencing, including transgene silencing, and elucidates the 

underlying genetic signals associated with these phenomena. Based on existing 
knowledge, many approaches can be employed to establish stable transgenic lines. 

While preliminary laboratory and field experiments conducted over a few 

generations provide valuable insights into the long-term stability of individual 
transgenic lines, the introduction of many genetic events through crossbreeding 

gives rise to novel inquiries. Due to the presence of identical or comparable 

promoter elements in many transgenic lines and the potential for sequence 
homologies in coding areas, novel epigenetic interactions can emerge. 

Consequently, it is essential to conduct comprehensive expression testing of 

transgenic events resulting from genetic transformation. 
 

   

 

Table 3 Comparison of transformation efficiency by direct methods and indirect (Biological method) of major crop plants. 

Plant Name Agrobacterium-mediated 

(Indirect Method) 

Electroporation PEG –Mediated Biolistic: particle 

bombardment 

Silicon carbide 

whisker-mediated 

Rice 
 

46% Saho et al. (2011) 26% Yang et al. 
(1988) 

8.5% Yang et al. 
(1988) 

 

50% Dai et al. (2001) < 10% Matsushita et 
al. (1999) 

Tobacco 75% (Silva et al. 2018) 2.2 x 10-4 

Riggs et al. (1986) 
10-6 

(Díaz and koop, 2021) 
4.8x 10-2 Klein et al. 
(1988) 

50% Kaeppler et al. 
(1992) 

Cotton 85% Firoozabady et al. (1987) 6.25% Rao et al. 

(2016) 

1% QANDEEL-E-

ARSH et al. (2021) 

3% Lee et al. (2013) 94% Asad S et al. 

(2008) 

Maize 45% Que et al. (2014) 9% Lyznik et al. 
(1989) 

85% Lyznik et al. 
(1989) 

60% Kaeppler et al. 
(1992) 

4 x 10-6 Kaeppler et al. 
(1992) 

Soyabean  10% Li et al. (2017) 50% Christou, Swain 

et al. (1990) 

50% Wu F and 

Hanzawa (2018) 

12% Khalafalla et al. 

(2006) 

26% Khalafalla et al. 

(2006) 

Wheat  25% Hayta et al. (2019) 1x10-5 

Liang et al. (2005) 
2.25 x 10-6 Ajmone et 
al. (1993) 

1-5% Ismagul et al., 
(2018) 

61.5% Serik et al. 
(1996) 

 

CONCLUSION 

 

The process of genetically transforming crops has introduced a novel avenue for 

enhancing productivity, hence yielding advantages for both agricultural producers 
and consumers. Since their inception, plant transformation methods have been 

employed for the purpose of genetic modification of agriculturally important plant 

species.  The optimal utilisation of its impact can be observed in underdeveloped 

or emerging nations, where the productivity of crops is significantly hindered by 

both biotic and abiotic stressors. The growing reliance on biotechnological 

research calls for the advancement of novel approaches to manipulate and integrate 
genetic sequences into plants, aiming to improve their characteristics in alignment 

with societal goals, while ensuring simplicity, reliability, and reproducibility. 

Conclusively the efficacy of physical or other genetic transformation methods is 
relatively limited in comparison to the Agrobacterium mediated method, which has 

been the predominant approach utilized thus far. However, considering the 

aforementioned limitations, direct physical methods offer a compelling alternative 
for overcoming certain barriers. The most popular direct transformation technique, 

both commercially and experimentally, is by far biolistic. To make the most of the 

techniques ultimately improved for penetration of the cellular wall and integration 
of the transgene, it is crucial to understand the physics underlying several of these 

strategies for a correct application. There is still much study to be done in order to 

fully utilize the approaches that have already been successfully developed for a 
small number of plant species and to improve the effectiveness and reproducibility 

of genetic alterations. More stringent protocols will be easier to create with a 
greater understanding of the physics involved, and new approaches to genetic plant 

transformation may become possible. 

In contrast to the prevailing resistance towards genetically modified crops in 
Eastern Europe, numerous countries in Asia and North America have embraced 

the cultivation and adoption of transgenic crops. The main obstacle resides in 

comprehensively grasping the intricate workings of the fundamental process 
underpinning gene expression, and there exists an urgent imperative to investigate 

gene expression, particularly its regulatory mechanisms. 
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