ANTIOXIDANT CHARACTERISTICS OF METHANOL AND ETHANOL EXTRACTS OF SELECTED VARIETIES OF HUMULUS LUPULUS

Nora Haring, Dana Urminská*, Blažena Drábová

Address(es): Doc. RNDr. Dana Urminská, CSC., Institute of Biotechnology, Faculty of Biotechnology and Food Science, Slovak Agricultural University in Nitra, Trieda Andreja Hlinka 2, 949 76 Nitra.

*Corresponding author: dana.urminska@unig.sk

ARTICLE INFO

ABSTRACT

Hops are an important ingredient in beer composition. In recent times, attention has been focused on the positive effects of hops as a plant with a high content of substances with antioxidant properties. Knowing the total concentration of polyphenols or the total antioxidant capacity of individual hop varieties could contribute to the creation of the so-called functional beer with a high content of biologically active substances. The results showed a connection between the content of α-bitter acids and the total content of polyphenols in hops. The highest concentration of polyphenols, corresponding to 2.52 g/dm³ of gallic acid, was the ethanol extract of the Polaris variety, prepared at a temperature of 100 °C from cryo-pulverized hops, whose content of α-bitter acids is up to 20 %. With the use of the ABTS cationic radical higher antioxidant activity, on average, was determined in the methanolic extracts, on the other hand, with the use of the DPPH radical, the ethanolic extracts showed a higher antioxidant activity. Using the ABTS method, the highest total antioxidant capacity was determined in the methanol extract of the Polaris variety, prepared from pulverized hops at a temperature of 100 °C, namely 25.50 mmol/dm³ Trolox equivalents. The DPPH method had the highest antioxidant efficiency, 94.9 %, determined in the methanol extract of the Polaris variety prepared from cryo-pulverized hops by extraction at a temperature of 100 °C. By comparing the results of analyzes of several hop varieties, the Polaris variety appears to be suitable for the preparation of functional beer.

Keywords: hops, antioxidant capacity, polyphenols

INTRODUCTION

Common hop (Humulus lupulus) is a perennial herbaceous liana from the Cannabaceae family cultivated by humans since time immemorial (Alonso-Esteban et al., 2019). In brewing, the flowers of the female plants are used, which are 2.5-5 cm long, cone-shaped cones that develop shortly after pollination. Cones contain a diverse amount of phytochemicals in the glandular trichomes (so-called lupulin glands) on the lower part of the bracts, which are responsible for the effects of hops on human health (Almaguer et al., 2014; Liberatore et al., 2018). Lupulin is secreted from the lupulin glands (Esslinger 2009), in which the primary metabolites are bitter resins and aromatic substances, responsible for the characteristic taste and aroma of hops (Stevens et al., 1998). Secondary metabolites are hop oils, resins, and polyphenols. The content of this metabolites in the dry matter of the hop cone ranges from 4-14 % (Yan et al., 2019). Hop resins are divided into soft and hard resin fraction. Bitter acids, known asα-bitter acids mainly represented by humulone and β-bitter acids, mainly represented by lupulone, are included in the soft resin fraction. These substances have the most significant effect on the bitterness of beer (Čermák et al., 2015; Ban et al., 2018). In addition to hop resins, lupulin contains polyphenols, which can be divided into flavan-3-ols (catechin, epicatechin, proanthocyanidin), phenolic acid (ferulic acid), flavonoids (queretin and kaempferol) and in smaller quantities prenylated flavonoids (xanthohumol, desmethylxanthohumol, isoxanthohumol,6-prenyllarigenin and 8-prenyllarigenin) (Gorinstein et al., 2007). The content of prenylated flavonoids, which are currently of the greatest scientific interest, depends on the variety, agroecological conditions of growing and storing hops. Their amount is generally reported to be around 5 g in 100 g of dry hop cone mass (Ciriminna et al., 2018). More specifically, Karabin et al. (2012) report that the content of xanthohumol is 0.2 – 1.1 g in 100 g dry matter of hop cone and according to Miligan (2009) 8-prenyllarigenin occurs only in very low concentrations. Xanthohumol and 8-prenyllarigenin, which is known as the most potent phytosterogen of hops (Sun et al., 2022; Leconte et al., 2023) are investigated as potential anticancer agents, with significant antiproliferative activity against cancer cells (Busch et al., 2015). Xanthohumol has the potential of a drug that could slow the malignant progression of breast cancer (Kim et al., 2013).

Hops have long been known in the pharmacopoeia as a plant that alleviates the symptoms of many health problems. Its use was essential in the treatment of toothache, leprosy, fever, during treatment of stomach problems, anxiety and it was even considered a medicament for insomnia (Korpeilainen et al., 2012).

Significant use of hops is the action of its flavonoids in alleviating menopausal discomfort (Keiler et al., 2015). Nowadays, it is confirmed that the bioactive substances of hops have a wide range of therapeutic and anti-inflammatory properties, the antimicrobial properties of hops against several microorganisms have also been proven (Oliveira Neto et al., 2017). Biologically active substances of hops can act as scavengers of free radicals, metal chelating agents, modulators of enzymatic activity and inhibitors of cell proliferation (Karabin et al., 2015). Thanks to these positive properties, these hop components are constantly being tested in primary or secondary prevention against some chronic degenerative diseases. The main role in these pathological processes is played by oxidation mechanisms in the organism (Zugravu et al., 2022). Hops show a very high antioxidant activity; slowing down or preventing the oxidation of substrates, thereby reducing oxidative stress in cells and the organisms (Lang et al., 2024). However, the disadvantage of several natural antioxidants is that, in their free form are sensitive to modifications caused by various physicochemical factors, thereby losing their antioxidant properties (Sharma et al., 2023). Based on these findings, there is an effort to prepare hop extracts with a high content of active polyphenols, which could find application in functional foods, nutraceuticals, pharmaceuticals, or cosmetics (Astray et al., 2020; Tronina et al., 2020; Sun et al., 2022). However, it follows from the results of the research so far that for the assessment of the antioxidant potential of hops, the sources of variability in the results are the variety and growing conditions of hops, the method of solubilization and extraction of biologically active substances, as well as the analytical methods used. In general, it is necessary to realize that many substances in hops act synergistically, thus combining antioxidant effects with anti-inflammatory or antiproliferative effects (Zugravu et al., 2022).

MATERIAL AND METHODS

Plant materials

Three varieties of common hops (Humulus lupulus L.) which differences in the declared content of bitter acids were analysed (Htm 1, Htm 2, Htm 3) (Tab. 1).
The homogenous preparation of hops was prepared by two procedures, namely mechanical homogenization, and cryo-pulverization after freezing with liquid nitrogen. During mechanical homogenization, 50 g of natural hop pellets were homogenized manually in a mortar (designation N). When preparing the cryo-pulverized sample, 200 ml of liquid nitrogen was added to 50 g of hop pellets. The frozen hops were then mechanically homogenized into a fine powder (designation C).

Extraction of prenylated flavonoids

The extraction system Dionex™ASE™ 350 (Thermo Fisher Scientific, USA) was used for the extraction of hop flavonoids. The extraction was carried out with polar solvents 99.8 % (v) methanol and 99.9 % (v) ethanol in six repeated five-minute extraction cycles at a pressure of 10.5 MPa and a temperature of 50 °C, 100 °C, 150 °C or 200 °C.

Determination of the total polyphenols content and the total antioxidant capacity was carried out in 6 repetitions.

Determination of the total polyphenols content

Folin-Ciocâlteu reagent was used for the determination of total polyphenols content. 25 µl of extract and 1 ml of Folin-Ciocâlteu reagent (1:9, v/v) were added to 1 ml of demineralized water. The solution was vigorously vortexed. After 5 minutes, 1 ml of saturated Na2CO3 was added and let to incubation for 15 minutes at room temperature. The total polyphenols content was determined from the absorbance value at 515 nm using a calibration line (0.1–50 g/L gallic acid) in mg/L GAE.

Determination of the total antioxidant capacity by the ABTS method

The cationic radical ABTS⁺ was generated by the reaction of 8 mmol/L 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with 3 mmol/L K3Fe(CN)6 in a ratio of 2:1 (v/v) in the dark at room temperature for 12 hours. Before determining the total antioxidant capacity, the ABTS⁺ solution was diluted with 96% ethanol (v) so that the absorbance of the solution at a wavelength of 734 nm was equal to the maximum absorbance of the calibration line, prepared by determining the antioxidant capacity of 0 - 1 mmol/L Trolox. To determine the antioxidant capacity, 25 µl of extract was added to 2 ml of ABTS⁺ solution. The reaction took place at room temperature for 30 minutes. The antioxidant capacity of the extract in mmol TE/L was determined from the absorbance value at 734 nm using the calibration line.

Antioxidant efficiency

The radical form of the compound 1,1-diphenyl-2-(2,4,6-trinitrophenyl-hydrazyl) (DPPH) was prepared by diluting 0.608 mmol/L DPPH with 99.8 % methanol (1.5, v/v). To determine the antioxidant activity of the extract, 200 µl of the sample was added to 3.8 ml of DPPH. After 30 minutes, the absorbance was measured at 515 nm. The control contained 200 µl of extraction reagent instead of the sample. DPPH inhibition (%) = (A0 - A1)/A0 x 100, where A0 is the absorbance of the control and A1 is the absorbance of the test.

RESULTS AND DISCUSSION

Three varieties of common hops (Humulus lupulus L.) were analysed, which differ significantly in the content of bitter acids. The Saaz Late variety has a low content of these substances (2.69 % α-bitter acids and 4 % β-bitter acids), the average content of bitter acids is typical for the Premiant variety (7.3 % α-bitter acids and 3.5 % β-bitter acids), on the other hand, the Polaris variety is characterized by a high content of bitter acids (20 % α-bitter acids and 6 % β-bitter acids).
There is a connection between the amount of α-bitter acids and the total content of polyphenols in hops. In the analyzed varieties, the total content of polyphenols in ethanol and methanol extracts obtained at 100 °C decreases in the order Polaris > Premiant > Saaz Late.

In methanol extracts from seven varieties of hops (Stryjan Golding, Hersbrucker, Hallertau Blanc, Cascade Cryo Hops®, Pacifica Jade, Pacifica, Topaz) total polyphenols ranged from 27.4 to 49.8 mg GAEE/g dried hops (Iannone et al., 2022). Different authors report very different contents of total polyphenols in the methanol extract, e.g. 2.39 mg GAEE/g (Fárcas et al., 2017), 7.4 µg GAEE/g (Maliar et al., 2017).

Polyphenols are generally considered to be thermally labile compounds (Rajbhar et al., 2015). In traditional extraction procedures, the highest yields of these substances are obtained at temperatures of 60 – 80 °C (Casasazza et al., 2012). On the other hand, high pressure extraction studies prefer temperatures above 100 °C. For example, increasing the extraction temperature to 180 - 200 °C meant an increase in both total polyphenols content and antioxidant capacity in the canola flour extract (Nandasiiri et al., 2019). Ibañez et al. (2005) found a direct correlation of antioxidant activities and the total content of bitter acids from the analyzed hops (2.69 %). Cryo-pulverization of hops increased the methanol extractability of substances with antioxidant action at the most suitable temperature of 100 °C in the analyzed hops by 15.2 %.

Of the ethanol extracts, Polaris C extracted at 100 °C had the highest total polyphenols content, g/L. The total polyphenols content in methanol extracts of hops increased the methanol extractability of substances with antioxidant action at the most suitable temperature of 100 °C in the analyzed hops by 15.2 %.

The total antioxidant capacity

Several methods are described for determining the antioxidant capacity of substances (Wang et al., 1996; Ghiselli et al., 2000; Bartosz, 2003; Sies, 2007). The reactions of antioxidants with transition metals or direct reactions of quenching or scavenging of free radicals are most often used in them. They are methods of evaluating the ability of substances to eliminate radicals and methods that assess the redox properties of substances (Harasym et al., 2014). ABTS radical scavenging assay was used for the analysis of hop extracts. (Ozen et al., 2006). The designation TEAC method (Trolox Equivalent Antioxidant Capacity, Proestos et al., 2009), is based on the fact that the antioxidant activity of the sample is compared with the antioxidative activity of the standard substance 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). Of the ethanol extracts, Polaris C extracted at 100 °C had the highest total antioxidant capacity (23.19 mmol/L TE, Figure 3). For comparison, the difference between the same prepared Polaris C and Polaris N extract was 13 % against N. The lowest antioxidant capacity was determined in the Saaz Late N extract (11.27 mmol/L TE in the extract obtained at 50 °C), which corresponds to the declared lowest content of α-bitter acids from the analyzed hops (2.69 %). Cryo-pulverization of hops increased the ethanol extractability of substances with antioxidant action at the most suitable temperature of 100 °C in the analyzed hops by 11.8 %. Arsen et al. (2015) found a direct correlation of antioxidant activities and the total polyphenols content in the hop’s ethanolic extract. A good antioxidative activity, corresponding to 0.78 - 0.99 mg/ml was determined in methanol extracts of hops, which had a higher polyphenolic content of 7.12 mg GAEE/g (Keskin et al., 2019).

Antioxidant efficiency

The ability to scavenge the DPPH radical was widely used to determine the antioxidant activity of crude extracts or purified compounds from plants. The results are expressed as percentage inhibition of radical activity. The highest antioxidant efficiency of all analyzed extracts, up to 94.9 %, was shown by the Polaris C methanol extract prepared from cryo-pulverized hops by extraction at a temperature of 100 °C (Figure 5 and 6). Highly effective substances with antioxidant activity were extracted with methanol from the hops Polaris N (by extraction at a temperature of 100 °C 91.6 % inhibition) and Polaris C (by extraction at a temperature of 100 °C 78.6 % inhibition), ethanol from hops Premiant C (by extraction at a temperature of 100 °C 88.76 % inhibition).

Krofta et al. (2008) were determined differences in the values of antioxidant activity in four Czech and ten world hop varieties by the DPPH radical. The highest antioxidant activities (from 70 to 80 %) were determined in hops Saaz and Spalter Select. Y ostatníchchmelauch bila antioxidant activity in the scope of 40 to 60 %. The comparison of the antioxidant efficiency of the Premiant variety is interesting. Fresh green hop Premiant were pressed, wrapped in paper and then stored. Hot water was used for extract preparation. The antioxidant efficiency of such an extract was 53.7 % (Krofta et al., 2008). While in the extracts prepared in this work from pelleted Premiant hops, the highest antioxidant activity of Premiant C, 88.71 %, was determined in the ethanol extract. By analyzing water and ethanol extracts (at 90 °C) of commercially used hops (No. 9910403006 Taiwan Tobacco and Liquor Corporation), it was found that the highest antioxidant activity expressed by 50 % inhibitory concentration, which indicates required concentration to scavenge 50 % of DPPH+ aqueous extracts of hops, namely
456.08 µg/g. In contrast, the extract prepared using 55% ethanol had an activity of only 184.9 µg/ml (Wu et al., 2020).

Figure 5 Antioxidant efficiency of ethanol extracts of hops

CONCLUSION

Currently, in brewing practice, in addition to classic cold hopping, beer is enriched with biologically active substances with an antioxidant effect, as well as the addition of pure hop extracts. The results of the work showed a connection between the content of α-berger acids and the total content of polyphenols in hops. Ethanol extraction under high pressure at 100 °C is an effective preparation methodank in which an extract with an application-interesting content of antioxidants is obtained. Cryo-pulverization of hops increases the yield of those substances which supports the use of Cryohops® in brewing practice. Of the hop varieties that were analyzed, the Polaris variety appears to be the most suitable for the preparation of beer with functional properties.

Acknowledgements: This work was supported by the Slovak Research and Development Agency under the Contract no. APVV-21-0206.

REFERENCES

Htm 1: https://www.maronoma.sk/premiant-plety
Htm 2: https://obchod.svet-piva.cz/zbobi/chmel-saaz-late-100g
Htm 3: https://www.uvartesipivo.sk/https://www.uvartesipivo-sk/Chmel-Polaris-100g-d77.htm