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INTRODUCTION 

 

Nickel (Ni) is a widely abundant chemical element found in the earth's crust with 
an average concentration of approximately 75 μg/g (Klein et Costa., 2020; 

Mustafa et al., 2023). Nickel and its compounds have diverse mechanical and 

commercial applications, the material is extensively utilised in electronic and 
medical industries, predominantly in electroplating and the manufacturing of 

batteries, electronic devices, and stainless steel. The increase in industrialisation 
has led to their growing release into the environment (Shrestha et al., 2021). Due 

to the high availability of Ni in the environment, plants readily absorb Ni, which 

then enters the food chain, posing significant health risks to both animals and 
humans (Altaf et al., 2022). The main source of nickel exposure in the general 

population comes from foods such as chocolate, coffee, tea, legumes and nuts, 

which tend to have higher concentrations of Ni, and to a lesser extent drinking 
water, this suggests that oral exposure was the primary route of exposure (Buxton 

et al., 2019). The liver is one of the most important organs in the body and plays a 

key role in metabolism of various substrates (Chang et al., 2017), Nickel 
administered orally can be distributed to various organs and metabolized in the 

liver, which can be subject to the detrimental effects of this element (Genchi et al., 

2020). Nickel can induce cytotoxicity by changing the redox state of hepatocytes 
and producing reactive oxygen species (ROS) (Renu et al., 2021; Teschke, 2022). 

The findings of (Akinwumi et al., 2020) indicate that both ROS and the 

mitochondrial pathway play significant roles in the induction of apoptosis in the 
liver of rats due to nickel chloride (NiCl2) (Guo et al., 2015), These molecules can 

modify various cellular compartments by altering the mitochondrial membrane 

potential (MMP) (Mutlu Gençkal et al., 2020), ultimately affecting the 
regeneration rate of ATP. Additionally, reduces the overall content of glutathione 

(tGSH) (Wei et al., 2022). This process induces oxidative stress in the celular 

rodox system, which then triggers the mitochondrial apoptotic pathway (Guo et 

al., 2015), this occurs through the modulation of BcL-2 family proteins, including 

the expression and release of pro-apoptotic molecules into the cytosol (Bad, Bax, 

cytochrome c) and the inhibition of anti-apoptotic molecules such as BcL-2, 
resulting in the activation of cell death enzymes caspase-9 and caspase-3 (Genchi 

et al., 2020; Salimi et al., 2020). Vascular damage, Kupffer cells aggregation, 

immune cells infiltration and even necrosis occur as a result of all these damaging 

changes in the liver, it can even lead to an inflammatory reaction, genotoxicity and 

carcinoma (Renu et al., 2021).  

Since ancient times, medicinal herbs have been used to treat a range of ailments. 
Today, there is a growing interest in the potential of natural bioactive compounds 

found in these herbs for creating effective and affordable treatments (Widayanti 

et al., 2020). Additionally, researchers are investigating the bioactive power of 
these compounds, particularly flavonoids and phenolic compounds, these have 

been shown to reduce ROS and to maintain the balance between pro-oxidants and 
antioxidants, which could help to limit complications related to oxidative stress 

(Fernando et al., 2019; Topal et Gulcin., 2022; Benkhedir et al., 2023). It is 

hoped that could provide a promising new avenue for the development of 
therapeutic treatments. Phenolic compounds are present in various plant species, 

each with varying levels and types. The Rosmarinus officinalis is among the plants 

containing these compounds (Kong et al., 2022). 
Rosmarinus officinalis has been extensively studied in numerous academic 

sources, which have documented its bioactive properties, including antioxidant, 

metal-chelating, anti-inflammatory, and anti-microbial effects (particularly in 
vitro), as demonstrated across various forms such as essential oil, methanolic 

extract, and aqueous solutions (Salehi et al., 2020; Saker et al., 2023). Moreover, 

there is currently no research have clearly demonstrated the impact of Rosmarinus 
officinalis on hepatotoxicity induced by NiCl2 in vivo. Additionally, no studies 

have explored how this herb affects the relationship between Reactive Oxygen 

Species and the mitochondrial apoptotic pathway, the proteins of the BcL2 family 
(anti-apoptotic and pro-apoptotic), as well as the apoptotic enzymes (caspase-3 and 

9).  

The study aimed to assess the impact of the phenolic extract on the parameters 
associated with the mitochondrial apoptotic pathway in NiCl2-induced 

hepatotoxicity in rats. The impact of Rosmarinus officinalis extract (RO-E) was 

examined on numerous biological parameters, including the concentration of ROS, 
MMP levels, tGSH levels, ATP levels, as well as the activity and expression of 

various enzymes and apoptotic proteins such as caspase-3, caspase-9, and 

cytochrome c. Additionally, we evaluated the impact of RO-E on the expression of 
anti-apoptotic protein BcL-2 and pro-apoptotic proteins Bad and Bax. To visualise 

the findings, we implemented histological sections. 

 
 

Nickel and its compounds are common environmental pollutants that may induce hepatotoxicity. Oxidation stress has been proposed as a 

possible mechanism implicated in this toxicity. The aim of this study was to evaluate the protective effect of Rosmarinus officinalis (RO) 
extract against NiCl2-induced hepatotoxicity by inhibiting mitochondrial-dependent apoptosis. To achieve this objective, 24 male rats 

were divided into four groups, each containing six rats. The first group was used as a control, the second was treated with RO extract (RO-

E), the third was treated with NiCL2 (10 mg/kg b.w.), and the fourth group was pre-treated with RO-E and then re-treated with NiCl2 after 
2 hours for 28 days. Oral administration of NiCl2 disrupts the redox state of liver tissue through the generation of reactive oxygen species 

(ROS), depletion of glutathione (GSH), breakdown of mitochondrial membrane potential (ΔΨm), and release of cytochrome c. This leads 

to the activation of the mitochondrial apoptotic pathway. The activity of proteins from the BcL-2 family can be modulated by inhibiting 
the expression of the anti-apoptotic protein BcL-2 and increasing the expression of the pro-apoptotic proteins Bax and Bad. This leads to 

an increase in the activity of caspase-3 and 9, and alters the membrane integrity of hepatocytes, resulting in histohepatic changes and an 

increase in AST, ALT and LDH levels. Pre-treatment with Rosmarinus officinalis extract can ameliorate oxidative hepatotoxicity and 
NiCl2-induced apoptosis due to its antioxidant capacity. These findings suggest that Rosmarinus officinalis has the potential to protect 

liver tissue and could be used as a preventive agent against oxidative stress and NiCl2-induced apoptosis. 

ARTICLE INFO 

Received 12. 4. 2024 

Revised 20. 11. 2024 

Accepted 2. 12. 2024 

Published 1. 2. 2025 

Regular article 

https://doi.org/10.55251/jmbfs.11234 

http://www.fbp.uniag.sk/
mailto:Salim.gasmi@univ-tebessa.dz
https://doi.org/10.55251/jmbfs.11234


J Microbiol Biotech Food Sci Benkhedir et al. 2025 : 14 (4) e11234 

 

 

 

 
2 

 

  

MATERIAL AND METHODS 

 

Chemicals 

 

Nickel chloride (R: 339350-50G) was acquired from Sigma-Aldrich, while all 

other products, including RIPA buffer, polyvinylidene difluoride membrane, 
protease and phosphatase inhibitor cocktail, BSA, ATP quantification kit, ECL 

Detection Kit, 5,5′-Dithio-bis - 2-nitrobenzoic acid "DTNB", 2′,7′-

dichlorodihydrofluorescein diacetate "DCFH-DA", Rhodamine 123, were sourced 
from the same supplier. The AST, ALT and LDH analysis kit, on the other hand, 

was obtained from SPINREACT ®. 
 

Rosmarinus Officinalis extract preparation 

 
Rosemary was collected in April 2023 from the eastern part of Algeria during the 

flowering period. The identification of the plant was performed by a botanist. 

Afterwards, it was cleaned and dried in the shade. The voucher specimen (05-2023) 
has been deposited in the herbarium of the Department of Applied Biology at 

Larbi-Tebessi University in Tebessa, Algeria.  

The Rosmarinus officinalis extract (RO-E) was obtained following (Markham, 
1982) protocol, with adjustments proposed by (Bruneton, 1993). Our study only 

investigates the solid-liquid phase of this method. 

 

Animals and experimental  

 

A total of 24 male Wistar rats (Rattus norvegicus) were acquired from the Pasteur 
Institute, the rats, aged 2 months, weighed between 200 and 220g and received no 

prior drug treatment. The rats were exclusively used for the present study. Prior to 

the experiment, the rats were acclimatized to laboratory hygienic conditions for 10 
days. The temperature conditions were maintained throughout the experiment 23 

c° ± 2 c° and natural photoperiod: 12h light and 12h dark, they were fed with pellet 

diet (ONAB-Elharouche, Skikda-Algeria), and water avail. 
 

Treatments with NiCL2 and RO-E 

 
The 24 rats were randomly allocated into 4 groups of 6 rats, and the doses 

administered were selected based on prior research with slight modification 

(Kayashima et al., 2020; Iqbal et al., 2020; Saker et al., 2023), as shown in the 

table below: 

 

Group 01: Control rats (vehicule 0,5 ml/100 g b.w) 
Group 02: RO-E (100 mg/kg b.w) 

Group 03: NiCL2 (10 mg/kg b.w) 

Group 04: RO-E + NiCL2 (the mixture of the 2 previous doses) 
 

The extract was dissolved in a vehicle (1% Tween 80), NiCL2 was dissolved in 

water saline 0.9% w/v. The animals received their doses orally via a number 7 
gavage tube. Group 01 received only the vehicle solution (Tween 80 dose 0.5 

ml/100 g b.w.), group 02 received a dose of RO-E (100 mg/kg b.w.), group 03 

received a dose of NiCL2 (10 mg/kg b.w.) and group 04 received the first dose of 
RO-E, then after 2 h the dose of NiCL2, these treatments were applied for 28 days 

with food and water intake within a fixed time. 

 

Collection of samples 

 

After 28 days of treatment, the rats were anaesthetised and sacrificed by cervical 

decapitation. Serum was collected by centrifuging the blood at 1500×g for 10 min 

for the biochemical determination of Serum marker enzyme activities (AST, ALT 

and LDH). The liver, which was the subject of our study, was retrieved directly in 
10% formalin solution and immediately sent for histological examination. After 

rinsing the liver with ice-cold saline, a section was initially homogenised with a 

10% w/v solution of 0.1 M Tris-HCL buffer at pH 7.4. It was then centrifuged at 
10,000 × g for 15 minutes at 4°C. The resulting supernatant was used to determine 

the levels of ATP, tGSH, and the enzymatic activity of caspase-3 and 9. 
Additionally, Western blot analysis was performed for the proteins BcL-2, Bad, 

Bax, Cyt c, Casp-3, 9 and β-actin.  

The other part of the liver was utilized to isolate the mitochondrion, and the 
mitochondrial membrane potential (MMP) was measured by employing the 

method outlined in (Kun et al., 1979) with slight modifications performed by 

(Baracca et al., 2013). The tissue was homogenised using a solution of 0.24 M 
manitol, 0.08 M sucrose, 0.02 M HEPS, 12 mM K-EDTA, 0.1 mM K-EGTA at pH 

7.4, and 0.4% albumin without the addition of digitonin. After centrifugation at 

2000 × g for 10 minutes followed by another centrifugation at 10000 × g for 10 
minutes, a supernatant containing mitochondrial fragments was obtained. The 

supernatant was then rinsed with a solution of (0. 25 mM sucrose, 0.02 mM 

HEPES, 1 mM K-EDTA, and 0.1 mM K-EGTA at pH 7.4 were utilized. K-EGTA 
was chosen to prevent potential interference with the mitochondrial membrane 

potential caused by Ca2+ contamination. 

 

 

Serum marker enzyme activities 

 

Aminotransferase (AST, ALT) and Lactate dehydrogenase (LDH) enzyme leakage 

only occurs when the cytoplasmic membrane of the liver is ruptured. The serum 

enzyme concentration was assessed through an autoanalyser (400 COBAS 

INTEGRA®) using a commercial kit of AST, ALT, LDH, (SPINREACT®, Ref: 
1001160, Ref: 41280 Ref: 1001260) in accordance with manufacturer's 

instructions. 

 

Activity of apoptotic enzymes (caspase-3 and 9) 

 
The method of Hayami (1999) was used to measure the activities of caspases-3-9 

in the liver homogenate. This involved centrifuging the homogenate at 15,000 g 

for 5 minutes, followed by dilution of the supernatant with PBS. A volume of 
enzyme solution was added to the mixture (100 mM Tris-Hcl, 2 mM EDTA and 

20 mM EGTA), the resulting solution was added to 1 mM dithiotreitol, then was 

followed by adding 50 mM fluorogenic substrates (Ac-DEVD-AFC for caspase-3 
assay and Ac-LEHD-AFC for caspase-9 assay), this reaction was incubated at 37 

C°, PH=7. 5, then an aliquot of the reaction mixture was taken after 10 and 20 min 

and 5 % HCLO4 was added to complete the reaction. After centrifugation at 15,000 
g for 5 min, the fluorescence of the supernatant containing free AFC was measured 

using a fluorescence microplate reader (excitation 380 nm, emission 460 nm). 

 

Evaluation of the total (tGSH), reduced (GSH) and oxidised (GSSG) 

glutathione 

 
The GSH and GSSG levels in the liver supernatant were quantified using the 

DTNB-GSSG reductase recycling assay, following the procedure outlined by 

Anderson (1985). In summary, the supernatant was neutralized by adding an 
equivalent volume of 0,76 M (KHCO3) were centrifuged at 15000 g for 5 minutes 

at 4°C, and the supernatant was retrieved. The total glutathione (tGSH) was 

measured by adding the recovered supernatant, standard, and blank to a 96-well 
microplate, and subsequently injecting a pre-made reagent containing 24 mM 

NADPH and 1.3 DTNB were dissolved in a phosphate buffer of 63.5 mM 

Na2HPO4, 63.5 mM NaH2PO4 and 0.65 mM EDTA (pH 7.5). After incubating the 
microplate for 15 minutes at 30°C, the reaction was initiated by the addition of 

glutathione reductase solution. The formation of TNB was monitored at 415 nm 

every 10 seconds for 3 minutes. The tGSH content in the samples was calculated 

through interpolation from a standard curve. GSSG measurement involved adding 

a solution of 2-vinylpyridine to the recovered supernatant, which was then mixed 

for 1 hour at 4°C for group (SH) derivatisation. Like how tGSH was measured, 
GSSG was also measured and data normalised to the protein amount for each 

sample. Reduced glutathione (GSH) was calculated using the formula: GSH = 

tGSH - (2 × GSSG). Values are expressed as nmol GSH/mg protein. 
 

Determination of reactive oxygen species (ROS) levels 

 
Measurement of ROS regeneration in liver supernatant was carried out using 2′,7′-

dichlorodihydrofluorescein diacetate (DCFH-DA) probe, which is hydrolysed by 

the cell to form 2′,7′-dichlorodihydrofluorescein (DCFH). This can react with the 
ROS present in the cell to form the fluorescent dichlorofluorescein (DCF) as per 

Crow's method (1997). Briefly, the supernatant was dispensed into a 96-well 

microplate, then incubated with 20 μm of DCFH-DA for 30 minutes at 37 °C. The 
plate was read using a fluorescence microplate reader (PirkinElmer Enspire) with 

excitation and emission wavelengths (485/530 nm). 

 

Evaluation of ATP content 

 

ATP quantification in the liver supernatant was determined through the D-
luciferin-luciferase technique. This method catalyses D-luciferin + ATP + O2 to 

produce oxyluciferin + Pi + AMP + CO2 + light. The light was measured using a 

luminescence microplate reader. In summary, the liver tissue was weighed and 
homogenised with 5% TCA. The resulting homogenate was centrifuged at 5000 g, 

4°C for 5 minutes (pellet proteins was quantified). The supernatant was then 
neutralised with Tris-acetate buffer and the pH adjusted to 7.5. The ATP quantity 

was subsequently measured in a 96-well microplate using the Sigma kit (119107-

1KIT) in accordance with the manufacturer's protocol. The quantity of ATP 
correlates with the light produced. This was measured using a luminescence 

microplate reader (Enspire from PerkinElmer). To determine the ATP 

concentration (nmol/mg of protein), an ATP standard curve was established. 
 

Evaluation Assessment of mitochondrial membrane potential (Δѱm) 

 
Mitochondrial membrane potential (MMP) was rapidly assessed using the method 

described by (Baracca et al. 2003) on mitochondria isolated from liver 

homogenate. Changes in mitochondrial potential (ΔΨm) were estimated by 
measuring the quenching of the fluorescent cationic dye Rhodamine 123 (Sigma, 

R: R8004-5MG). Breifly liver mitochondrial isolate was incubated with 

Rhodamine 123 (10 μM) for 15 min in a microplate, and centrifuged (16,000 × g, 
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5 min, 4 °C), then the fluorescence of the supernatant was measured using a 

microplate fluorescence reader (490/520 nm excitation and emission wavelength). 

 

Western blot  

 

Liver tissue lysate from the control and treated groups (RO-E, Ni, RO-E+Ni) was 
prepared using RIPA buffer (sigma- R: 0278) with a protease and phosphatase 

inhibitor cocktail (Sigma-R: PPC1010), and subsequently stored at -80°C. Protein 

quantification was performed by the Bradford method (1976). In short, an equal 
amount of protein (15 μg/well) was taken from each sample, separated by 

electrophoresis in a 10% SDS-polyacrylamide gel, and subsequently transferred 
onto a polyvinylidene difluoride (PVDF) membrane (Sigma-Immobilon®-R: 

IPVH08100). The nonspecific sites of the membrane were then blocked with 5% 

low-fat milk in saline solution buffered with PB-T (PBS and 1% Tween 20) for 1 
hour at room temperature. Next, the membrane was incubated overnight at 4°C 

with primary antibodies diluted (1:500) of rabbit anti-BcL-2 (R: SAB4500003), 

Bad (R: SAB5701290), Bax (R: SAB5700071), Cytochrome c (R: SAB5701571), 
Caspase-3 (R: SAB5700196), Caspase-9 (R: PRS2515), β-actin (R: ZRB1312-

4X25UL) from (Sigma antibodies). Then the membrane was washed with PBS-T 

three times, followed by incubation with secondary antibodies diluted (1:2000) of 
Goat-anti Rabbit IgG antibody HRP conjugate (Sigma-R: 12-348). The samples 

were incubated at room temperature for 1 h, washed three times with PBS-T, and 

visualized using the ECL Detection Kit (Sigma-R: GERPN2232), the 
chemiluminescent signal was observed with (FUSION FX Spectra system), and 

densitometric analysis was carried out utilizing the Image J software. 

 

Determination of proteins content 

 

Protein quantification from the homogenate was determined based on the protocol 
outlined by Bradford (1976). 

 

Statistical analysis 

 

The results are presented as means ± standard deviation (n = 6). The difference 

between groups was evaluated using One Way ANOVA, followed by a Tukey 
post-hoc test utilizing Graph Pad Prism 8.0.1 software, and significance was set at 

P < 0.05. 

 

RESULTS 

 

Serum marker enzyme activities 

 

The study reveals that administering NiCL2 to rats led to significant increase in 

serum enzyme levels (P<0.05) in comparison to the control group. However, in 
rats treated with NiCL2, pre-treatment with RO extract resulted in a significant 

return of serum enzyme levels to normal (P<0.05) when compared to the group 

treated with NiCL2 alone. In regards to the RO-E treated group, there was no 
significant change in serum enzymes when compared to the control group (Fig. 1).  
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Figure 1 Effect of RO-E on serum marker enzymes activities in control and 

experimental rats. Values were expressed as means ± SD (n = 6), minimal 

significant level; P< 0,05, significantly difference; a in respect to group Control, b 
in respect to group Ni, (ANOVA followed with Tukey test), C; control, Ni; Nickel 

chloride, RO-E; Rosmarinus officinalis extract, AST; aspartate transaminase, 

ALT; alanine transaminase, LDH; lactate dehydrogenase 
 

Activity of apoptotic enzymes (caspase-3 and 9) 

 

The findings indicate a significant increase in the activity of caspase-3, -9 enzymes 

in rats exposed to NiCL2 in comparison to control rats (P<0.05). In contrast, rats 

that were pretreated with RO extract and then treated with NiCL2 showed a 

significant decrease in apoptotic enzyme activity (P<0.05), whereas no significant 

difference in enzyme activities was observed between RO extract-treated and 

control rats (Fig. 2). 
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Figure 2 Effect of RO-E on Activity of apoptotic enzymes (caspase-3 and 9) in 

control and experimental rats. Values were expressed as means ± SD (n = 6), 

minimal significant level; P< 0,05, significantly difference; a in respect to group 
Control, b in respect to group Ni, (ANOVA followed with Tukey test), C; control, 

Ni; Nickel chloride, RO-E; Rosmarinus officinalis extract. 

 
Evaluation of the total (tGSH) reduced (GSH) and oxidised (GSSG) 

glutathione. 
Exposure of laboratory rats to NiCL2 resulted in significant changes to the liver's 

redox status. These alterations were associated with the amount of tGSH, which 

was depleted of GSH (29.87±1.8 nmol tGSH/mg prot) and an increased 
concentration of GSSG (7.5±1.32 nmol tGSH/mg prot) compared to the control 

group (GSH; 59.9±1.85 and GSSG; 1.23±0.21 nmol tGSH/mg prot) (P<0.05). On 

the other hand, the combination of RO-E and NiCL2 led to a positive improvement 
in the tGSH level. This was evidenced by significant restoration in the levels of 

GSH and GSSG (46.97±2.05 and 2.4±0.53 nmol tGSH/mg prot) when compared 

to rats treated with NiCL2 only. It is noteworthy that the levels of GSSG were 
reduced without significant difference when compared to control rats. Moreover, 

there was no significant difference in the rats treated with only RO extract when 

compared to control rats (Fig. 3). 
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Figure 3 Effect of RO-E on tGSH levels in control and experimental rats. Values 
were expressed as means ± SD (n = 6), minimal significant level; P< 0,05, 

significantly difference; a in respect to group Control, b in respect to group Ni, 

(ANOVA followed with Tukey test), C; control, Ni; Nickel chloride, RO-E; 
Rosmarinus officinalis extract, GSH; reduced glutathione, GSSG; oxidized 

glutathione. 

 
Determination of reactive oxygen species (ROS) levels 

 

An analysis of ROS generation rates, evaluated using DCFH-DA dyes as a 
fluorescence probe, revealed that rats treated with NiCL2 exhibited a significant 

increase in ROS levels (224.6 ±4.86 DFC%) compared to the control (P<0.05). 

Conversely, pretreatment with RO extract for rats treated with NiCL2 resulted in a 
significant decrease (142±5.65 DFC%) in ROS formation compared to rats treated 

with NiCL2 (P<0.05). No significant difference was observed in the rats solely 

treated with the RO extract in comparison to the control rats (Fig. 4). 
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Figure 4 Effect of RO-E on ROS generation in the liver of control and experimental rats. Values were expressed as means 

± SD (n = 6), minimal significant level; P< 0,05, significantly difference; a in respect to group Control, b in respect to 
group Ni, (ANOVA followed with Tukey test), C; control, Ni; Nickel chloride, RO-E; Rosmarinus officinalis extract, DFC; 

dichlorofluorescein. 

 

Evaluation of ATP content 

 
Analysis of the results from (Fig. 5) showed the effect of the RO extract on 

hepatocyte ATP levels. The treatment of rats with NiCl2 resulted a significant 

reduction in ATP levels compared to the control group (P<0.05). The protective 
effect of the extract against NiCl2 was observed as significant restoration of ATP 

levels compared to rats treated only with NiCl2 (P<0.05). Conversely no significant 

difference was observed between the rats treated with the RO extract and the 
control group. 

Gro
up C

Gro
up R

O-E

Gro
up N

i

Group Ni+RO-E

0

5

10

15

20

25

30

35

40

nm
ol

 A
TP

/m
g 

pr
ot

ei
n

b b

b
a

a

 
Figure 5 Effect of the RO extract on liver ATP levels in control and experimental 

rats. Values were expressed as means ± SD (n = 6), minimal significant level; P< 
0,05, significantly difference; a in respect to group Control, b in respect to group 

Ni, (ANOVA followed with Tukey test), C; control, Ni; Nickel chloride, RO-E; 

Rosmarinus officinalis extract. 
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Figure 6 Effect of the RO extract on liver mitochondrial membrane potential (Δѱm) in control and experimental rats. Values were expressed as means ± SD (n = 6), 

minimal significant level; P< 0,05, significantly difference; a in respect to group Control, b in respect to group Ni, (ANOVA followed with Tukey test), C; control, Ni; 

Nickel chloride, RO-E; Rosmarinus officinalis extract.  
 

Assessment of mitochondrial membrane potential (Δѱm) 

 
The collapse percentage of ΔΨm in experimental and control rats was measured 

by recording the fluorescence intensity of the mitochondrial dye rhodamine (Rh 

123), (Fig. 6) shows the results, which indicate a significant decrease in Rh 123 
fluorescence intensity in the livers of rats treated with NiCL2 compared to the 

control group (P<0.05). Rats treated with a combination of RO extract and NiCL2 
exhibited a notable reduction in mitochondrial membrane potential (P<0.05). In 

contrast, no significant variance in ΔΨm was observed between the group treated 

with RO-E and the control group. 
 

 

 
 

Western blot  

 

The BcL-2 protein family has a regulatory function in controlling the 
mitochondrial apoptotic pathway. Western blot analysis (Fig. 7) revealed a 

significant down-regulation in the expression of BcL-2 protein in rats treated with 

NiCL2 (4,5 fold over control), whereas a significant upsurge in BAX and bad 
expression was observed relative to control rats (2,5 and 4,3 fold over control) 

(P<0.05). All the variations in apoptotic protein expression were significantly 
reversed following prior administration of RO extract in rats treated with NiCL2 

in comparison with rats treated only with NiCL2 (2- 1,4- 1,3 fold over control 

consecutively) (P<0.05). Nonetheless, there was no significant difference between 
the rats treated with the RO extract and the control. 

The decrease in ΔΨm will ultimately result in the liberation of cytochrome c from 

mitochondria. This subsequently triggers caspase-3 and 9, initiating the process of 
apoptosis. Analysis of western blot results (Fig. 7) revealed a significant rise in the 



J Microbiol Biotech Food Sci Benkhedir et al. 2025 : 14 (4) e11234 

 

 

 

 
5 

 

  

expression of cyt c, Casp-3 and 9 (2,3- 4,6 and 8,5 fold over control consecutively) 

in NiCL2-treated rats compared to control rats (P<0.05). Preventive treatment with 

Ro extract for NiCl2-treated rats resulted in a significant improvement in the 

expression of apoptotic proteins (1,4- 1,6 and 2,8 fold over control consecutively) 

compared to rats treated with NiCl2 alone (P<0.05). However, no significant 

difference was observed between the RO-E group and the control. 
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Figure 7 Effect of the RO extract on levels expression of proteins apoptotic in 

control and experimental rats. Values were expressed as means ± SD (n = 6), 

minimal significant level; P< 0,05, significantly difference; a in respect to group 
Control, b in respect to group Ni, (ANOVA followed with Tukey test), C; control, 

Ni; Nickel chloride, RO-E; Rosmarinus officinalis extract.  

 
 

 

 

Histology  

  

The histological sections of liver tissue stained with H&E after 28 days of 

treatment in experimental and control rats are shown in (Fig 8). Control rats and 

rats treated with RO extract displayed regular hepatocyte and nucleus architecture, 

along with sinusoids and central vein lined with intact flat endothelial cells. 
Treatment of rats with NiCL2 resulted in changes to the distribution of hepatocytes, 

degeneration of the nucleus, piknotyc nucleus, development of necrotic zones 

around the centrilobular vein with infiltration of inflammatory cells, invasion by 
kupffer cells and degeneration of sinusoids. However, rats who received a 

preventive treatment with RO extract combined with NiCL2 showed significantly 
reduced alterations in these areas.  

  

  
Figure 8 Liver histology from control and experimental rats after 28 days 
treatment (40×). (A); control rats, (B); RO-E, (C); Ni, (D); Ni+RO-E, BS; basal 

sinosoid, KC; kupffer cells, PN; Pyknotic nuclei, Li; lymphatic infiltration, DN; 

degenerated nuclei, DBS; degenerated basal sinosoid.  
 

DISCUSSION 

 
Most of the toxic effects induced by NiCL2 are apparent in various organs (Tyagi 

et al., 2013; Xu et al., 2023). Among these organs, the liver is an essential site for 

bioaccumulation and detoxification (Renu et al., 2021). Consequently, the liver is 
more vulnerable to the adverse effects of NiCL2 that can lead to oxidative stress. 

This stress generates ROS, which are involved in the mitochondrial pathway that 

induces apoptosis by modulating the expression of apoptotic proteins (Iqbal et al., 

2021; Salah et al., 2021). An experimental model of liver damage caused by NiCl2 

was employed to investigate the protective impact of Rosmarinus officinalis extract 

on the diverse parameters altered by NiCl2. In this study, high levels of 
transaminase and LDH were observed in the serum of rats treated with NiCl2. 

These results indicate the occurrence of cell leakage and loss of functional integrity 

in the liver cell membrane, implying the destruction of hepatocytes (Derbal et al., 

2020). Therefore, these findings reflect the hepatotoxic effect of this metal 

(Akinwumi et al., 2020). The pretreatment of RO extract to NiCL2-treated rats 

results in a hepatoprotective effect through the reduction of serum AST, ALT, and 
LDH activity. The research indicates that the extract from RO has distinct bioactive 

properties with high flavonoid and phenolic acid levels. In particular, Rosmarinic 
acid and quercetin have a strong antioxidant effect due to their ability to scavenge 

free radicals. These molecules assist in maintaining the integrity of the hepatic cell 

membranes by stabilising these enzymes (Abou Zeid et al., 2017; Aoiadni et al., 

2021). 

NiCl2 can enhance the function of various apoptotic enzymes including caspase-3 

and 9, which have a direct role in the stimulation of apoptosis in liver cells. 
Administration of NiCL2 to rats significantly increases the activity of caspases 3 

and 9, and this increase is significantly related to changes in the cellular rodox 

system due to overproduction of reactive oxygen species (ROS). The latter can 
activate the apoptotic enzyme caspase-3 and 9 through the intrinsic mitochondria-

dependent pathway (Zhang et al., 2022; Elderdery et al., 2023). Pretreatment of 

rats with rosemary (RO) extract significantly reduced the activity of apoptotic 
enzymes, caspase-3 and 9, in rats treated with NiCl2. RO extract was discovered 

to contain high levels of carnosic acid, a molecule with substantial antioxidant 

properties that can scavenge ROS, thereby preventing the activation of apoptotic 
enzymes via the mitochondrial pathway (de Oliveira et al., 2015). The study 

observed an augmentation in intracellular ROS and a decrease in GSH levels, 

accompanied by a minor upsurge in GSSG concentrations in rats treated with 
NiCL2, where the ROS rise is attributable to changes in the prooxidant-antioxidant 

equilibrium (Rahman et Rahman., 2021). Previous studies have demonstrated 

that the mitochondrion is the primary location responsible for the excessive 
generation of oxygenated reactive species. Mutant cells lacking mitochondrial 

DNA have evidenced a reduction in ROS and increased resistance to Ni (Sousa et 

al., 2018), supporting the proposition that the respiratory chain is involved in 

(A) 
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overproducing ROS and serves as the initial source of O2- and H2O2. Moreover, 

recent findings suggest that Ni may catalyse the creation of OH- radicals via the 

Waber-Wies reaction (Chen et al., 2003; de Oliveira et al., 2015; Derbal et al., 

2022). Reactive oxygen species (ROS) are efficiently regulated by an antioxidant 

system consisting of enzymatic and non-enzymatic components. Among these 

components, GSH is involved in the neutralization of cellular ROS. However, 
studies suggest that the depletion of GSH may be attributed to the sulfhydryl group 

of cysteine from GSH, which has a high affinity for Ni. It has been reported that 

cells lacking the GSH gene show an elevated ROS level and increased sensitivity 
to Ni (de Oliveira et al., 2015; Ali et al., 2019; Kakavand., 2021). Also other 

studies have reported a slight elevation of GSSG levels, which is caused by the 
effect of Ni in creating an imbalance between GSH/GSSG through the formation 

of a bond with the thiol group of GSSG (De Luca et al., 2007; Saleh et al., 2019). 

All these changes were significantly improved when the application of a 
preventative dose of RO extract at 100 mg/kg b.w., this improvement is due to the 

antioxidant properties of RO, which act against various reactive species that 

consume the quantity of cellular GSH during oxidative stress (El-Demerdash et 

al., 2021). A new compound, Rosm1, was recently isolated from the methanolic 

fraction of RO, which demonstrated the most potent antioxidant power among the 

compounds of the RO extract when compared to vitamin E. It was also 
demonstrated that Rosm1 protects the different cellular constituent from oxidative 

stress (de Macedo et al., 2020). Another study demonstrated the efficacy of 

carnosic acid extracted from rosemary in the internalisation of H2O2 and 
enhancement of cellular GSH levels (de Oliveira et al., 2015). 

Based on the aforementioned results, it has been determined that NiCL2 has a 

significant impact on increasing cellular ROS. It has also been discovered that 
NiCL2 inhibits mitochondrial succinate dehydrogenase (Sousa et al., 2018). These 

findings prompted us to assess the change in ΔΨm, which can also affect cellular 

energy reserves (ATP). The group administered with NiCL2 displayed a 
noteworthy modification in ΔΨm, resulting in a reduction in the quantity of ATP. 

As we said earlier, nickel inhibits the activity of succinate dehydrogenase in the 

mitochondrial respiratory chain. This, in turn, can cause a reduction in ΔΨm 
alongside an increase in reactive oxygen species. It has been posited that ΔΨm is 

utilised to move protons to the ATPase pump to generate ATP. Any change in 

ΔΨm levels could decrease the quantity of ATP within the cell (Xu et al., 2010; 

Suski et al., 2018; Zorova et al., 2018). All these alterations were significantly 

reduced during pre-treatment with RO extract. This reduction could be due to the 

presence of distinct bioactive compounds in the plant, including apigenin, which 

has a notably high level of antioxidant power (Tian et al., 2021). It has been noted 

that apigenin stabilises ΔΨm, which ultimately increases the functionality of the 

ATPase pump, leading to an improvement in cellular ATP levels. Studies have 
revealed that apigenin's capacity to eliminate free radicals is attributed to its 

possession of over 3 OH functions and a double bond between carbon 2 and 3, 

providing this substance with a remarkably elevated antioxidant capability 
(Ahmad et et al., 2019; Wang et al., 2020). Another study demonstrated that RO 

carnosic acid has the ability to preserve ΔΨm by internalizing ROS molecules 

generated by the respiratory chain. Additionally, it promotes the activity of 
mitochondrial antioxidant enzymes against these oxygenated reactive species 

(Park et al., 2010; de Oliveira et al., 2015; de Oliveira, 2018).   

Based on our aforementioned results and other research it has been established that 
NiCl2 leads to a collapse in ΔΨm, as mitochondria play a key role in the activation 

of the intrinsic apoptotic pathway (Salimi et al. 2020), a loss of ΔΨm is considered 

as a trigger for the release of cytochrome c. the release of the latter is regulated by 
the proteins of BcL-2 family (Aghaei et al., 2020), which can be classified into 

two groups: anti-apoptotic (e.g. BcL-2) which inhibits the release of cytochrome c 

and pro-apoptotic (e.g. Bax and Bad) (Opferman et Kothari, 2018). During the 

collapse of ΔΨm, the Bax protein translocates to the mitochondrial membrane, 

increasing its permeability (Zhang et al., 2022). Subsequently, Bad suppresses 

BcL-2 protein, causing the release of cytochrome c to the cytosol, leading to the 
activation of caspase-3 and 9 and eventually cell death (Chota et al., 2021). 

Numerous studies have reported these changes induced by NiCl2 (Guo et al., 

2021; Xu et al., 2023). Caspase-3 and 9 activity has been observed in NiCL2-
treated rats. The caspase activity was confirmed by performing Western blot 

analysis which showed a significant decrease in BcL-2 expression and significant 
increase in the expression of Bax, Bad, cytochrome c, caspase-3 and 9 proteins. 

These changes were significantly positively improved during pretreatment with Ro 

extract. This improvement may be attributed to the plant's ability to inhibit the 
mitochondrial apoptotic pathway related to the downregulation of proapoptotic 

protein expression (Park et al., 2010; Moore et al., 2016). Carnosic acid is widely 

known to reduce the levels of caspase-3 and 9 at low doses (Meng et al., 2015). It 
also limits the release of cytochrome c by decreasing the expression of BcL-2 

protein and stabilising the ΔΨm (de Oliveira et al., 2016; de Oliveira et al., 2018). 

The histological analysis of the liver validates the aforementioned changes 
observed in rats treated with NiCL2, as identified in numerous studies (Hashem et 

al., 2019; Saleem et al., 2022). The alterations present notable disparities in the 

distribution of hepatocytes, degradation of the nucleus, pyknotic nucleus, and the 
emergence of necrotic areas. These hepatic alterations involve first degree 

oxidative stress in their development, and which will subsequently progress 

towards failure of this organ. The results indicate that prior administration of the 
RO extract to rats mitigated liver tissue damage to almost normal levels. The 

attributed cause of this positive outcome is potentially due to the hepatoprotective 

actions of carnosic acid, carnosol, apigenin and rosmarinic acid (Azab et Albasha, 

2018; Das et al., 2018; Yang et al., 2022; Guimarães et al., 2023). 

 

CONCLUSION 

 

In conclusion, administering Rosmarinus officinalis extract (100 mg/kg b.w.) to 

rats with NiCl2-induced hepatotoxicity demonstrated a substantial effect. This 

effect was revealed for the first time and was found to modulate the redox state of 
hepatocytes by attenuating ROS and increasing the level of cellular GSH. 

Additionally, it prevented the induction of the intrinsic mitochondrial apoptotic 
pathway by stabilizing mitochondrial membrane potential ΔΨm. It preserved ATP 

levels, limited cytochrome c release, which in turn attenuated caspase-3 and -9 

activity and expression of Bax and Bad proteins, the plant increased BcL-2 
expression, and protected hepatocyte membrane integrity by reducing AST, ALT, 

and LDH serum levels. we can suggest that this plant can be used as a preventive 

agent against NiCl2. Further studies are required to investigate the impact of this 
plant on other extrinsic apoptotic pathways induced by NiCL2. 
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