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INTRODUCTION 

 

The pathogenicity and physiology of microorganisms are significantly influenced 

by the proteins on their surface (Wilson et al., 2002). Bacterial surface proteins 
play a crucial role in the development of antibiotic resistance (Ghai, 2023). 

Bacterial surface proteins like SrtA anchor surface proteins to the cell wall 

envelope, promoting adhesion mechanisms and biofilm development, offering a 
novel approach to bacterial infections and an ideal target for anti-virulence drugs 

(Cascioferro et al., 2014; Selvaraj et al., 2018; Raimondi et al., 2019). Biofilm 
formation by SrtA may control processes like host cell entry and immune response 

evasion, making it a target for inhibiting bacterial virulence (Figure 1) (Oniga et 

al., 2017). Inhibition of SrtA that is help to attach surface protein can disrupt 
biofilm formation, helping in combating drug resistance, pathogenesis and 

infectivity (Ilangovan et al., 2001; Nitulescu et al., 2016). Enterococci are 

opportunistic gram-positive bacteria and in recent years, Enterococci strains have 
caused a lot of worry because they can become immune to many antibiotics. In the 

case of Enterococci, SrtA enzyme  plays a significant role in the formation of 

biofilm (Lanka et al., 2024). Several alternative approaches have been proposed 
to identify and characterise sortase inhibitors. In recent years, there has been a rise 

in interest in natural anti-sortase agents (Nitulescu et al., 2017; Thappeta et al., 

2020). Many natural molecules and plant products showed inhibition against SrtA.  
Flavonoids are an important class of natural products, belonging to a class of plant 

secondary metabolites (Kumar et al., 2018; Zandavar et al., 2023). These are 

associated with a broad spectrum of health-promoting effects and are gaining 
popularity because of their unique structures and aromatase inhibitory properties. 

Many flavonoids showed inhibition properties against SrtA (Kang et al., 2006; 

Wang et al., 2019). Rutin isolated from dried flowers of Sophora japonica were 
found to inhibit Streptococcus mutans (S. mutans) (an oral bacterium responsible 

for human dental caries) SrtA(Yang et al., 2016). It is also a potent inhibitor 

against Streptococcus agalactiae SrtA activity and can significantly increase the 
survival rate of freshwater fish Oreochromis niloticus infected with Streptococcus 

agalactiae (Khunrang et al.,2023). Luteolin, a tetrahydroxyflavone, is known to 

increase oxygen production while decreasing hydrogen peroxide levels in lung 
cancer cells by inhibiting the manganese superoxide dismutase (MnSOD) enzyme 

function (Lin et al., 2008). Many other flavonoids, which are natural substances 

found in a variety of plants, have been identified as inhibitors of SrtA. For example, 
Taxifolin, a flavonoid derived from Chinese herbs, has demonstrated the ability to 

reversibly inhibit SrtA (Wang et al., 2021).  

Similarly, other flavonoids including Quercetin, Epigallocatechin gallate (a 
common component of green tea), and Formononetin have been reported to have 

inhibitory effects on SrtA. Morin  and Myricetin  have also shown potent inhibitory 
activities against SrtA (Olla et al., 2023; Song et al., 2017; Huang et al., 

2014;Silva et al., 2017). Furthermore, the flavonoid 7-Hydroxy-6-

methoxyflavanone has displayed significant inhibitory activity against S. mutans 
SrtA (Park et al., 2017).  These studies indicate that flavonoids may serve as 

potential therapeutic agents in the management of infections caused by gram-

positive bacteria.In this work, we have used  in-house flavonoid based library 
(Total fifty flavanoids compounds) and docked on area of the active site of SrtA 

active site His 120 (79), Cys184 (141), and Arg 197 (149) from Ef-SrtA 
(Ilangovan et al., 2001; Abujubara et al., 2023; Guiton et al., 2009). In this 

study, three dimensional (3D) model structure of Ef-SrtA protein has been 

developed and the best top ten inhibitors were identified using the PyRx virtual 
screening program. Further top ten best inhbitors redock and best five flavonoids 

have been slected for best inhibitor cateogory. ADME properties of all the best five 

flavanoids have been calculated and correlation between the structure and function 
of these top five compounds was analyzed using DFT. 

 
Figure 1 Role of SrtA in anchoring the surface proteins to the cell membrane of 
bacteria 

 

 

 

 

 

The enzyme known as SortaseA (SrtA) is widespread present in gram-positive bacteria. SrtA is responsible for anchoring a large number 

of surface protein virulence factors to the cell wall. This enzyme is not involved in bacterial growth and is also present on the cell 
membrane, which makes it more accessible for the design of inhibitors. In the case of Enterococcus faecalis (Ef), which is responsible for 

a wide range of nosocomial infections, SrtA from this organism promotes development of biofilm, which in turn makes bacteria resistant 

to antibiotics. Numerous inhibitors have been identified and characterized against Ef-SrtA; however, none have been clinically approved 
till now. Natural compounds and their derivatives showed inhibition against Ef-SrtA. In this work, a flavanoids-based in-house natural 

library was screened against Ef-SrtA to see how these molecules bind to active site of Ef-SrtA. Furthermore, the absorption, distribution, 

metabolism and excretion (ADME) properties of the top five compounds, Abyssinones lii, Apigenin, Rutin, Fisetin and Kaemferol, were 
calculated, Additionally, the correlation between the structure and function of these top five compounds was analyzed using Density 

Functional Theory (DFT) studies. 
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MATERIAL AND METHODS 

 

Preparation and optimization Ef-SrtA (Homology Modeling) 

 

The protein Ef-SrtA with a length of 242 amino acids was obtained from uniprot 

(https://www.uniprot. org/ uniprotkb /A0A855UI50/entry) to develop model three-
dimensional (3D) structure of Ef-SrtA using PHYRE2 Protein Fold software. 

Quality of model was checked by using the proSA-web tool, which indicated a Z-

Score of -6.2 and showed that 91.6% of residues were located within the favorable 
region in the Ramachandran plot. Further refinement and energy minimization has 

been done using Yet Another Scientific Artificial Reality Application (YASARA) 
software. Furthermore, the active site in Ef-SrtA was predicted utilizing the 

DoGSiteScorer (https://bio.tools/dogsitescorer). 

 

Ligand retrieval 

 

We obtained a list of natural 50flavonoid compounds, from the PubChem database  
(Kumaret al., 2023). These compounds 3D conformers were downloaded in 

Structured Data File (sdf) format. The compounds were  underwent energy 

minimization, prior to the virtual screening and all the compounds were converted 
to the Protein Data Bank, Partial Charge (Q) and Atom Type (T) (pdbqt) format 

using PyRx  before screening with modeled Ef-SrtA Virtual Screening Tool 0.8 

PyRx https://pyrx.sourceforge.io/ (Dallakyan et al., 2015). 
 

Virtual screening  

 
PyRx, an open-source software, was used in this study for the virtual screening of 

in-house flavonoid-based natural inhibitors. In order to conduct virtual screening, 

it is necessary to first build a grid in which the ligand is expected to bind 
successfully (Kumaret al., 2023). In close proximity to the binding site of Ef-SrtA, 

grid boxes were generated at the center of the protein with XYZ coordinates of 

8.178579 Å, 29.398211 Å, and -14.835526 Å, respectively. For all the ligands 
same grid box size was used for virtual screening. An exhaustiveness value of 8 

was utilized to thoroughly explore the natural compounds library. To get potential 

inhibitor against Ef-SrtA among the 50 flavonoids we have made binding energy 
cuttoffof -7.0 kcal/mol. 

 

Molecular docking with ADME profiling 

 

The screening results were validated and recalculated by molecular docking 

experiments carried out by using Autodock tool 1.5.7 (Morris et al., 2009; 

Allouche, 2012; Sharma et al., 2022). Top ten compounds on the basis of binding 

energy redock using a flexible docking approach reported by  with minor 

modification (Trott et al., 2010). Prior to docking Kollman charges were assigned 
to the Ef-SrtA molecule and the docking simulations employed the Lamarckian 

genetic algorithm with 10 Genetic Algorithm (GA) runs to enhance accuracy and 

reliability. The grid box on the protein was set at XYZ coordinates of 8.178579Å, 

29.398211Å,and -14.835526Å, respectively, with a spacing of 0.375 Å. After 

forming complexes between the compounds and Ef-SrtA, a comprehensive 

analysis was conducted to evaluate binding energies and molecular interactions. 

The protein-ligand complex was selected based on the lowest docking energy. 

Subsequently, the interactions between the protein and ligand were further 
analyzed using visualization tools, including Discovery Studio Visualizer 

20.1.0.19295, PyMOL, and Chimera. Additionally, the drug-likeness properties of 

the compounds were assessed using Swiss ADME requiring the generation of 
SMILES notation for each compound (Gupta et al., 2022). Furthermore, the 

toxicity profiling of the compounds were carried out using the ProTox-2 tool to 
provide supplementary insights into their safety profiles. 

 

DFT analysis of top five hit compounds  

 

The correlation between the structure and function of top five hit compounds were  

analyzed using DFT studies (Kumar et al., 2023). We have used  the GAUSSIAN 
16 software package for all theoretical calculations and GAUSS-VIEW 6.1 for 

visualization (Becke, 1993; Raghavachari, 2000).To optimize the top hits, DFT 

with Becke's three-parameter method for exchange interaction and Lee-Yang-Parr 
for correlation functional (B3LYP) was utilized, along with the 6-31+G(d,p) basis 

sets (Scott et al., 1996). Initial molecular structures were sketched using GAUSS-

VIEW 6.1 (Ricca, 1995). For the compounds studied, significant parameters 
including total energies, dipole moments, Highest Occupied Molecular Orbital 

(HOMO) and Lowest Unoccupied Molecular Orbital (LUMO)energy levels and 

band gap energy were determined (Thomas et al., 2023). 
 

RESULTS AND DISCUSSION 

 
Exploring potential flavonoid inhibitors for the development of Ef-SrtA 

inhibitors using virtual screening 

 
Virtual screening is an effective technique for identifying optimal lead molecules 

for drug discovery from large libraries of small molecules. By screening small 

molecules databases, it can predict which molecule will interact best with a specific 
target (Ef-SrtA) to form a stable complex. The present study demonstrated the use 

of 50 flavonoids (natural compounds) based from PubChem to conduct virtual 

screening against the Ef-SrtA, to identify putative optimal hits. The top ten 

molecules were selected based on lowest binding energy ranging from −6.9 

kcal/mol to −7.5 kcal/mol. Additionally, the orientation of the molecules and the 

existence of various interactions, including hydrogen bond and hydrophobic 
interactions, were also taken into consideration. 

 

  
 

 

Table 1 Drug likeness properties of top ten flavonoids after virtual screening 

Compounds (Name and CID) MW 

(g/mol) 

Log P Hb 

Donar 

Hb 

Acceptor 

Topological polar 

surface (Ǻ) 

Solubility Lipinski Pains Veber 

Abyssinones lii (10408069) 390.47 

g/mol 

3.65 1 4 55.76 Moderately 

soluble 

Yes; 0 

violation 

0 alert Yes 

Apigenin (5280443) 270.24 1.89 1 5 90.90 soluble Yes; 0 

violation 

0 alert Yes 

Rutin (5280805) 610.52 0.46 10 16 269.43 soluble No; 3 

Violation 

 

1 alert: 

 

No; 1 

violation: 

TPSA>140 

Fisetin (5281614) 286.24 1.50 4 6 111.13 soluble Yes; 0 

violation 

0 alert Yes 

Kaemferol (5280863) 286.24 1.70 4 6 111.13 soluble Yes; 0 

violation 

0 alert Yes 

Dalbergin (442768) 268.26 2.63 1 4 59.67 soluble Yes; 0 

violation 

0 alert Yes 

Apigenidin (441647) 290.70 -5.51 3 4 94.06 Moderately 

soluble 

Yes; 0 

violation 

0 alert Yes 

Pelargonidin (440832) 271.24 -2.44 4 5 94.06 soluble Yes; 0 

violation 

0 alert Yes 

Abyssinone II (10064832) 324.37 2.83 2 4 66.76 Moderately 

soluble 

Yes; 0 

violation 

0 alert Yes 

Colophyllolide (5281392) 416.47 3.68 0 5 65.74 Moderately 

soluble 

Yes; 0 

violation 

0 alert Yes 

 

Molecular docking, interaction studies and drug-likeness analysis 

 

After virtual screening with PyRx, the top ten flavonoid-based inhibitors were re-

docked. All complexes were visualized on PYMOL, and molecular interactions 
were analysed. Drug likeness and physo-chemical properties of best ten molecules 

were calculated (Table1) using Swiss-ADME (http://www.swissadme.ch/). In 
addition, it provides safety and effectiveness of the molecules. In general, a 

chemical is considered a potential medication, if it fits the requirements of 

Lipinski's Rule of Five. These requirements include a molecular weight (MW) of 
less than 500 g/mol, fewer than 10 hydrogen bond acceptors, fewer than 5 

https://bio.tools/dogsitescorer
https://pyrx.sourceforge.io/
http://www.swissadme.ch/
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hydrogen bond donors and a LogP value of less than 5. All ten best compounds 

also passed the VEBER rule where the rotatable bond should <=10 and TPSA 

<=140Pan-assay interference compounds, also known as PAINS, are a group of 

chemical compounds notorious for their propensity to yield false-positive results 

in high-throughput screening procedures. Rather than interacting with a single, 

specific biological target, these compounds are recognized for their indiscriminate 
reactions with multiple targets (Baellet al., 2018). This broad reactivity is often 

attributed to the existence of certain disruptive functional groups that are prevalent 

among PAINS. In the PAINS analysis, all of the top 10 compounds were 

successful. Keeping all the above things in consideration we choose the five best 

flavonoids Abyssinones lii, Apigenin, Rutin, Fisetin and Kamferol (Table 2). All 

the listed compounds have zero violation of Lipinski’s rule except Rutin, whose 

MW was greater the 500 gm/mol (Table 1). 

 

Table 2 Interacting residues of top flavonoids with Ef-SrtA 

Compound 
Interacting residues (bond distance in Å) 

Hydrogen bond Hydrophobic interactions Electrostatic interactions 

Abyssinones lii Arg149(2.87) 
Leu51(5.21), Met63(5.09), Ala77(4.45), Pro121(4.62), 

Val124(3.91), Ile126(4.92), Leu127(4.73), Ile139(4.83) 
Nil 

Rutin His79 (2.41), Cys141(2.32) 
Leu56(5.23), Ala77, Val124(5.02), Ile139(5.29), 

Thr140(2.43),Arg149(5.27) 
Nil 

Apigenin Ser78(2.43) 
Met63(3.99), Ala77(5.26), Ile127(5.48), Ile139(4.57), 

Arg149(3.66) 
Nil 

Fisetin Ser78(2.63), Cys141(2.63) 
Leu56(5.90), His79(5.35), Ala77(3.96), Val124(5.10), 

Ile139(5.06), Arg149(3.78) 
Nil 

Kaemferol Ser78(2.47), Arg123(2.33), Ile127(2.69) Ala77(4.97), Val124(4.93), Ile139(4.58), Arg149(3.70) Nil 

 

Table 3 Best five flavonoids molecular weight, binding energy and structure 

Flavonoids Abyssinones lii Rutin Apigenin Fisetin Kaemferol 

MW(g/mol) 390.47 610.52 270.24 286.24 286.24 

Binding Energy (kcal/mol) -7.4 -7.2 -7.0 -7.0 -6.9 

Structure 

  

 
 

 

 
 

 
Figure 2 2D illustration was created to depict the binding interactions between the top five screened flavonoids and Ef-SrtA.(a) Abyssinones lii, (b) Apigenin, (c) 

Rutin, (d) Fisetin, (e) Kamferol 
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Figure 3 Inhibitor 2-(aminomethyl)-3-hydroxy-4H-pyran-4-one (Cyan colour) (PDB ID;6R1V), LPTA substrate analogue (orange colour) complex (PDB ID; 2KID), 

Rutin (Blue) and Fisetin (green) Ef-SrtA superimposed. 
 

Interaction studies of best five flavonoids with Ef-SrtA 

 
The primary residues interacting with top hits were Ser78, His79, Cys141 and 

Arg149. All the best five molecules bound to active site of Ef-SrtA (Table 2). Ef-

SrtA-Abyssinones lii complex has a docking score ΔG-7.4 kcal/mol. Arg149 
formed week hydrogen bond with O3 of Abyssinones lii. Hydrophobic interactions 

with Abyssinones lii are formed by Leu51, Met63, Ala77, Pro121, Ile126, Leu127 

and Ile139. Ef-SrtA-Apigenin complex has a docking score ΔG-7.0 kcal/mol. 
Ser78formes hydrogen bonds with apigenin. Hydrophobic interactions with 

Apigeninare formed by Met63, Ala77, Ile127, Ile139 and Arg149. Arg149 also 

formed Pi-Cation interactions with Apigenin. The Ef-SrtA-Rutin complex has a 
docking score ΔG-7.2 kcal/mol.Ser78, His79 and Cys141 formed hydrogen bonds 

with Rutin. Leu56, Ala77, Val124, Ile139, Thr140 and Arg149 formed 

hydrophobic interactions with rutin. Ef-SrtA-Finestin complex has a docking score 

ΔG-7.0 kcal/mol.Ser78 and Cys141 formed hydrogen bond finestin. Hydrophobic 
interactions with finestin are formed by Leu56, His79, Ala77(3.96), Val124, Ile139 

and  Arg149.Ef-SrtA-Kaemferolcomplex has a docking score ΔG-6.9kcal/mol. 

Ser78 and Cys141 formed hydrogen bond Finestin. Hydrophobic interactions with 
Finestin are formed by Ala77, Val124, Ile139 and Arg149 (Figure 2). On the basis 

of binding energy and mode of interaction Fisetin and Rutin showed potential 

inhibitors against Ef-SrtA (Table 3). Comparison with the LPTA substrate 
analogue complex (PDB ID; 2KID) and 2-(aminomethyl)-3-hydroxy-4H-pyran-4-

one based prodrug-SortaseA complex (6R1V) showed both Fisetin and Rutin 

bound near to substrate binding site of Ef-SrtA (Figure 3). 
 

 

Table 4 Different energy of natural compounds after the DFT analysis 

Ligands 
Total 

energy (eV) 

HOMO 

energy (eV) 

LUMO 

energy (eV) 

Band gap 

(eV) 
Dipole moment 

Abyssinones 

lii 
-34538.368 -0.21121 -0.05902 0.1638 3.006 

Apigenin -25820.963 -0.20799 -0.19309 0.0147 1.184 

Rutin -60875.008 -0.19955 -018034 0.0192 7.663 

Fisetin -27885.401 -0.24384 -0.22136 0.0224 5.009 

Kaemferol -27886.163 -0.24107 -0.21772 0.0233 2.246 

 

 
Figure 4 The diagrams of the Highest Occupied Molecular Orbital (HOMO) and 
Lowest Unoccupied Molecular Orbital (LUMO), as well as the Electrostatic 

Potential (ESP) maps of the best-docked compounds are presented. These 

compounds include (a) Abyssinones lii, (b) Apigenin, (c) Rutin, (d) Fisetin, and 

(e) Kamferol The molecular orbital wave function displays positive (red) and 

negative (green) phase distributions. The HOMO, which represents electron donor 

regions, determines the ionization potentials, while the LUMO, representing 

electron acceptor regions, determines the electron affinity. The ESP illustrates the 

electron-rich (red) and electron-poor (blue) regions 

 

Electronic structure of best five flavonoids using DFT 
 

The DFT is supported by quantum mechanics, which offers a precise 

representation of the electronic and structural characteristics of a compound. In 

order to determine the electronic distribution of five naturally occurring 
compounds, we have implemented orbital energy calculations. This 

comprehension of electronic distribution could illuminate the interactions between 

ligands and proteins and facilitate the investigation of the binding patterns of these 
compounds. Electrostatic potentials provide a more detailed perspective on regions 

with differing electron densities. The distributions of red and green in the 

molecular orbital wave function denote positive and negative phases, respectively. 
In a ligand, the HOMO and LUMO positions are crucial, as they regulate the 

interaction with a potential receptor. The HOMO of the ligand and the LUMO of 

the receptor are in reciprocal interaction. Therefore, an increase in the ligand’s 
HOMO energy narrows the energy gap with the receptor’s LUMO, potentially 

intensifying binding. Similarly, a decrease in the ligand’s LUMO energy is 

anticipated to enhance binding. An Electrostatic Potential (ESP) map presents a 
comprehensive view of a ligand’s polarity (Azarhazinet al., 2018). Comparing the 

total energy for all five compounds it was inferred that the least negative energy 

was shown by the Abyssinones lii -3458.368 (eV) while the highest negative 
energy of -60875.008 (eV) was shown by Rutin. The compounds that exhibited a 

smaller energy gap (EHOMO-ELUMO) showed more reactivity and less stability like in 
the case of Apigenin which is 0.0147 (eV) and with the highest energy band gap 

of 0.1638eV in Abyssinianslii. While negative nature of the HOMO and LUMO 

for all compounds shows the stable nature of the top natural compounds with Ef-
SrtA. DFT also calculated the dipole moment which shows the hydrogen bonding 

ability of the listed compound. Apigenin (1.184) shows the lowest dipole moment 

which is a very good agreement with the docking result while Rutin (7.663) shows 
the highest value (Table 4). The computations of the color-coded Molecular 

Electrostatic Potential (MEP) offer a deeper understanding of the electrostatic 



J Microbiol Biotech Food Sci / Singh et al. 2024 : 14 (2) e11256 

 

 

 

 
5 

 

  

potential of the compounds. The red color represents the electronegative region, 

which serves as a hydrogen bond acceptor. Conversely, the blue color denotes the 

electropositive region, acting as a hydrogen bond donor. The neutral regions, 

which can engage inhydrophobic interactions, are depicted by colors that span 

from yellow to green (Figure4). 

 

CONCLUSION 

 

Plants contain an abundance of naturally occurring compounds known as 
flavonoids. It has been suggested in numerous reports that flavonoids have the 

potential to inhibit the activity of SrtA. In order to identify flavonoid-based 
compounds that may function as potential inhibitors of SrtA, in silico studies were 

carried out. After conducting virtual screening, five flavanoids (Rutin, Apigenin, 

Fisetin, Kaemferol and Abyssinones lii) were selected for docking experiments out 
of a total of fifty flavanoids. All the best five flavonoids compounds bound to 

active sites of SrtA. All of the five flavonoids that are considered to be the best are 

bound near to the active sites of SrtA. Fisetin and Rutin demonstrated potential 
inhibitory effects against Ef-SrtA based on their binding energy and mode of 

interaction. Fisetin and Rutin were observed to be bound in close proximity to the 

substrate binding site of Ef-SrtA. 
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