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INTRODUCTION 

 

Cucumber mosaic virus (CMV, known as Cucumovirus CMV based on the 

binomial nomenclature), is the type species of the Cucumovirus genus, belonging 

to the Bromoviridae family (Bujarski et al., 2019). The CMV genome consists of 
three single‐stranded messenger sense RNAs (RNA1, 2 and 3) encoding at least 

five open reading frames (ORFs). The capsid protein (CP), translated from 

subgenomic RNA 4, is required for intercellular and long‐distance movement and 
aphid transmission (Mochizuki & Ohki, 2012). Based on the genomic 

distinctions, CMV isolates divide into three main molecular groups, namely IA, 
IB, and II (Jacquemond, 2012). During a recent study based on high-throughput 

sequencing (HTS), isolates of group IA and II were found in Solanaceae crops in 

Slovakia (Mrkvová et al., 2022). 
Although the virus is transmitted mechanically and partly also by seeds (Ali & 

Kobayashi, 2010), under natural conditions it is mainly vectored by more than 70 

aphid species in a stylet-borne non-persistent manner (Gildow et al., 2008). CMV 
is distributed worldwide and infects more than 1200 species of 100 plant families, 

including monocot and dicot plants (Mochizuki & Ohki, 2012). 

Most epidemiologic studies related to CMV have in the past focused on 
economically important agricultural crops. Less attention has been paid to the 

occurrence and molecular diversity of the virus in weeds and wild plants. Such 

plants, however, are an important part of intensively cultivated crops, of the 
agroecological interface, or of wild plant communities (Hasiów-Jaroszewska et 

al., 2021, Slavíková et al., 2023). The virus can spread in both directions between 

weeds and crops and cause the emergence of new local epidemics. Knowledge 
about the host range, occurrence and diversity of CMV in wild plants and weeds 

can therefore significantly contribute to the understanding of virus epidemiology 

and help to the adoption of effective preventive and control measures.  
In a previous work, in addition to Solanaceae hosts, CMV was also detected in 

weeds from the Papaveraceae family (Mrkvová et al., 2022). In order to expand 

the knowledge about the natural host range of CMV in Slovakia, several weeds 
and wild plants were tested in two localities, which are characterized by different 

ecological contexts. Moreover, the affiliation of CMV isolates to molecular groups 

was evaluated based on the complete sequence analysis of the CP gene. 
 

MATERIAL AND METHODS 

 

Collection of samples and initial detection  

 

To monitor the presence of CMV, samples of weeds and wild plants were taken 
during the growing season (June - September 2023) from two different locations 

in western Slovakia: i/ a private production garden in Pezinok (GPS coordinates: 

48.30308, 17.27645) situated in the vicinity of other gardens and small agricultural 
plots and ii/ a small forest area inside the city of Bratislava (GPS: 48.17189, 

17.06226) surrounded by the urban environment without connection with 

agricultural plantings. Leaf samples were collected from actively growing plant 
parts, preferably from plants displaying virus-like symptoms or disorders (Table 1, 

Table2). Where necessary the identity of plant species was confirmed using online 

tools (https://www.plant.id/, https://identify.plantnet.org). 
For the initial detection of CMV, a double antibody sandwich-enzyme-linked 

immunosorbent assay (DAS-ELISA) was performed according to the protocol 
described by Clark & Adams (1977). Briefly, microtitre plate wells (no. 82.1581, 

Sarstedt, Numbrecht, Germany) were coated with polyclonal antibody (Bioreba, 

no. 071490) diluted in carbonate buffer (pH 9.6) according to the supplier's 
specifications and incubated for 4 h at 37°C. Plant leaf samples (ca. 0.1-0.2 g per 

sample) were then homogenized in PBS (1/10 w/v) containing 0.05% Tween-20 

and 2% polyvinylpyrrolidone 40. Crude plant extracts were incubated overnight at 
4°C. CMV-specific alkaline phosphatase-conjugated antibody diluted in conjugate 

buffer (Bioreba, no. 081490) was then added and incubated for 4 hours at 37°C. 

After each step, the plates were washed with phosphate-buffered saline (PBS, pH 
7.4). The presence of antigen-antibody complexes was detected by adding 1 mg/ml 

para-nitrophenyl phosphate to the substrate buffer. The composition of the buffers 

is available at https://www.dsmz.de/fileadmin/_migrated/content_uploads/DAS-
ELISA_01.pdf. Absorbance values were measured repeatedly (generally over 10-

60 minutes) at 405 nm using an ELISA reader (Multiscan EX, ThermoFisher 

Scientific, Waltham, MA, USA). A sample was considered positive if its 
absorbance value was at least three times the standard deviation over the mean 

absorbance of the negative control samples (Cucumis sativus cv. Desana, Pisum 

sativum cv. Alderman and Nicotiana benthamiana). C. sativus plants cv. Desana, 
experimentally inoculated with isolates CP2 (group IA) and LAS (group II), were 

used as positive controls (Mrkvová et al., 2022).  

For mechanical inoculation, inoculum prepared by grinding weed leaves in Norit 
buffer (dilution 1/10 w/v) was applied to C. sativus Desana plants at the cotyledon 

stage, as previously described (Mrkvová et al., 2022). 

 
RT-PCR, partial genome sequencing and sequence analyses 

 

Total RNAs were extracted from leaf tissues using the SpectrumTM Plant Total 
RNA Kit (Sigma-Aldrich, St. Louis, MO, USA). First strand cDNA was 

synthesized by reverse transcription of total RNAs using random hexamer primers 

and Avian myeloblastosis virus (AMV) reverse transcriptase (both from Promega 
Corp., Madison, WI, USA). An approximately 875 bp long segment of the CMV 

Cucumber mosaic virus (Bromoviridae) is a worldwide widespread pathogen affecting more than 1200 plant species.  Although more 

attention is paid to CMV research on agricultural crops, vegetables or ornamental plants, this work was focused on the analysis of several 
weeds and wild plants as potential natural hosts of CMV. For this purpose, samples from two different agroecological locations were 
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(Arctium lappa L.), rough hawksbeard (Crepis biennis L.), wood avens (Geum urbanum L.), prickly lettuce (Lactuca serriola L.), black 
medick (Medicago lupulina L.), bitter dock (Rumex obtusifolius L.), field sowthistle (Sonchus arvensis L.), white clover (Trifolium 

repens) and white violet (Viola alba Besser.) were further characterized by sequencing the complete CP gene, disclosing their affiliation 

to the CMV Group II. We have shown that weeds and wild plant species can be effective hosts for CMV and can serve as virus reservoirs 

from which the virus can be spread to cultivated crops. 
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RNA3 genome encompassing the complete capsid protein gene was amplified in 

RT-PCR using the CMV-specific primer pair CMV-CP-F (5´-

TYTCATGGATGCTTCTCCRC-3´, sense) / CMV-CP-R (5´-

CTGGATGGACAACCCGTTC-3´, antisense). PCR was performed using Go Taq 

G2 Mastermix (Promega Corp., Madison, WI, USA) under the following cycling 

conditions: initial denaturation at 94°C for 5 min, followed by 35 cycles of 94°C 
for 30 s, 58°C for 30 s, and 72°C for 60 s and a final extension step at 72°C for 10 

min. Amplified products were purified using the Wizard PCR Preps DNA 

purification system (Promega Corp., Madison, WI, USA) and directly Sanger 
sequenced by priming the sequencing reaction with the same oligonucleotides as 

used for PCR (Eurofins Genomics, Ebersberg, Germany). 
The flanking untranslated parts were trimmed from the generated sequences to 

obtain the complete sequences encoding the CP gene (657 bp). CP gene sequences 

were compared with CMV sequences representing groups IA, IB and II obtained 
from the GenBank database (www.ncbi.nlm.nih.gov, accessed 22 April 2024). 

Phylogenetic analyses and comparisons were conducted using MEGA v.7 (Kumar 

et al., 2016). The presence of satellite CMV was tested by RT-PCR using the 

primer pair satCMV_skF (5´-GGTTATATCTACGTGAGGATC-3, 

sense´)/satCMV_skR (5´-ACCACCTAACAGAGTGTTTC-3´, antisense) as 

described previously (Mrkvová et al., 2022). 

 

RESULTS AND DISCUSSION 

 

Wild annual and perennial plants are an essential part of the agro-ecological 
environment, which, like cultivated crops, can be hosts to various pathogens, 

including viruses. Pathogenic viruses cause macroscopic changes (symptoms) on 
plants, which often lead to a decrease in plant vitality and growth (Jiang & Zhou, 

2023, Tatineni & Hein, 2023). Visual symptoms recorded in this work on wild 

plants consisted of e.g. mosaics, mottling, local necrotic spots, deformation of 
leaves and/or stunting of the whole plant (Fig. 1). 

 

 
Figure 1 Symptoms observed on plants that tested positive for CMV; Arctium lappa (a), Geum urbanum (b), Viola alba (c), Crepis biennis (d), Lactuca serriola (e), 

Medicago lupulina (f), Rumex obtusifolius (g), Sonchus arvensis (h), Trifolium repens (i). 
 

 

 

http://www.ncbi.nlm.nih.gov/
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To study the occurrence of CMV in weeds and uncultivated wild plants, we 

focused on two different ecological locations. The first of them represented an 

intensively managed garden with the occurrence of CMV-sensitive crops 

(Pezinok). The second location consisted of the edge of a small forest area all 

around adjacent to the urban environment, without a direct connection to the 

agricultural landscape (Bratislava). Out of a total of 43 different plant species 
(Table 1 and 2), 9 were tested as CMV positive by DAS-ELISA using CMV-

specific antibodies. CMV-positive samples included rough hawksbeard (Crepis 

biennis L.), prickly lettuce (Lactuca serriola L.), black medick (Medicago lupulina 

L.), bitter dock (Rumex obtusifolius L.), field sowthistle (Sonchus arvensis L.), 

white clover (Trifolium repens) from the locality Pezinok and greater burdock 

(Arctium lappa L.), wood avens (Geum urbanum L.) and white violet (Viola alba 

Besser.) from Bratislava. All plants tested positive for CMV showed symptoms 

similar to viral infection (Fig. 1), although symptoms of virus infection were 

sometimes difficult to distinguish as often masked by environmental stresses and 
pest damages.  

 

 

Table 1 List of plant samples tested positive for CMV, host characteristics and availability of partial CMV genome sequences in public database.  

sample 

(isolate) 
species family life cycle locality 

Genbank 
accession 

number 

B3 Sonchus arvensis Asteraceae perennial PK PP982859 
B4 Viola alba Violaceae perennial BA PP982855 

B9 Arctium lappa Asteraceae biennial BA PP982856 

B10 Lactuca serriola Asteraceae annual / biennial PK PP982851 
B12 Geum urbanum Rosaceae perennial BA PP982854 

B18 Medicago lupulina Fabaceae annual/ perennial PK PP982852 

B22 Rumex obtusifolius Polygonaceae annual/ perennial PK PP982853 
B31 Crepis biennis Asteraceae biennial PK PP982857 

B36 Trifolium repens Fabaceae perennial PK PP982858 
Legend: PK – Pezinok (cultural environment), BA – Bratislava (wild environment) 

 

Table 2 List of plant species (including families) whose samples tested negative in DAS-ELISA 

Pezinok (cultural environment) 
Bratislava (wild environment) 

 

Achillea millefolium (Asteraceae) 

Borago officinalis (Boraginaceae) 
Calystegia sepium (Convolvulaceae) 

Chenopodium album (Amaranthaceae) 

Conium maculatum (Apiaceae) 
Convolvulus arvensis (Convolvulaceae) 

Elymus repens (Poaceae) 

Euphorbia peplus (Euphorbiaceae) 
Glechoma hederacea (Lamiaceae) 

Mentha piperita (Lamiaceae) 

Origanum vulgare (Lamiaceae) 
Oxalis dillenii (Oxalidaceae) 

Plantago lanceolate (Plantaginaceae) 

Plantago major (Plantaginaceae) 
Senecio vulgaris (Asteraceae) 

Stellaria media (Caryophyllaceae) 

Taraxacum officinale (Asteraceae) 
Verbascum densiflorum (Scrophulariaceae) 

 

Aegopodium podagraria (Apiaceae) 
Capsella bursa-pastoris (Brassicaceae) 

Cirsium arvense (Asteraceae) 

Erigeron annuus (Asteraceae) 
Fragaria vesca (Rosaceae) 

Geranium molle (Geraniaceae) 

Geranium robertianum (Geraniaceae) 
Hedera helix (Araliaceae) 

Impatiens parviflora (Balsaminaceae) 

Lamium purpureum (Lamiaceae) 
Oxalis acetosella (Oxalidaceae) 

Parietaria officinalis (Urticaceae) 

Picris hieracioides (Asteraceae) 
Sisymbrium officinale (Brassicaceae) 

Taraxacum officinale (Asteraceae) 

Urtica dioica (Urticaceae) 
 

 
However, it is clear from previous works that the virome of a plant host can be 

complex and the plant is often attacked simultaneously by several viruses 

(Minicka et al., 2019, Susi et al., 2019, Jo et al., 2022). It should be stressed that 
no other viral co-infections besides CMV were tested in our work. Therefore, it is 

not possible to unequivocally state that the observed morphological changes in 

CMV-infected plants are due only to the presence of this virus. In addition, 
infection with multiple viruses may provide atypical symptomatology due to the 

synergism or antagonism of two or more viruses (Moreno & Lopez-Moya, 2020, 

Alcaide et al. 2020). 
To confirm the infectivity of the detected CMV isolates, we mechanically 

transferred the virus from three weeds (Arctium lappa, Sonchus arvensis and Viola 

alba) to healthy cucumber plants cv. Desana, which we subsequently verified by 
DAS-ELISA (Fig. 2).  

 

 
Figure 2 Symptoms induced in C. sativum cv. Desana plants 8 days post 

mechanical inoculation with sap from CMV-positive plants Arctium lappa (a), 
Sonchus arvensis (b) and Viola alba (c). 

 

To assess the molecular variability of CMV in 9 DAS-ELISA positive plants, an 

RT-PCR was performed targeting CMV RNA3. The specific primers encompass 

part of the intergenic region, the complete CP gene and a part of 3´untranslated 
region (nucleotide positions 1155-2023 based on the reference genome 

NC_001440). Besides the high polyvalence of primers, this arrangement enabled 

us to obtain complete CP gene for subsequent phylogenetic analysis. The complete 
nucleotide CP sequences reported herein has been deposited in the GenBank 

database under accession no. PP982851-PP982859. All CP sequences were 

collinear and molecularly closely related, consisting of 657 nucleotides including 
the stop codon. BLAST search and phylogenetic analysis based on the complete 

CP gene clearly showed that the CMV isolates identified in this work belong to the 

Group II CMV isolates. In addition, the analyzes showed very low nucleotide 
divergence among the 9 isolates, regardless of their location (mean genetic distance 

reached 1%). 

Interestingly, contrary to previous work (Mrkvová et al., 2022) no satellite CMV 
RNA have been detected to be associated to CMV infection of tested weeds. The 

biological or epidemiological significance of sat RNA in CMV epidemics 

involving weed plant communities remains thus to be investigated further 
(Betancourt et al., 2011).  

The importance of biennial or perennial weeds and wild plants lies in their role as 

overwintering hosts from which a new cycle of viral disease can be initiated in the 
spring through effective transmission by aphids or transmission of the virus by 

seeds (Tomlinson et al., 1970, Hobbs et al., 2000). Therefore, the elimination of 

weeds susceptible to CMV is one of the key parameters of control measures aimed 
to slow viral epidemics, although it is very difficult to follow in practice. 
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Figure 3 Neighbor-joining tree of Slovak CMV isolates generated from the 
complete CP gene obtained in this study. For each Group (Jacquemond et al., 

2012), reference database isolates are added, identified by their Genbank accession 

number. The characteristics of Slovak isolates are described in Table 1. Scale bar 
indicates a genetic distance of 0.02. Bootstrap values >70 (500 bootstrap 

resamplings) are indicated as percentages. 

 

CONCLUSION 

 

CMV is a globally distributed viral pathogen with an extremely large host range 
that causes significant yield losses and poor crop quality in susceptible hosts. We 

have shown that 9 weeds and wild plant species can be effective hosts for CMV 

and can serve as virus reservoirs from which the virus can be spread to cultivated 
crops. It should be emphasized that selection pressure and evolutionary processes 

operating in new or changing ecological areas, changes in agro-ecological 

conditions due to global warming, emergence of new invasive or non-native plant 
hosts and co-infection(s) with other viruses may cause the emergence of new virus 

variants, which potentially increase the epidemiological threat associated with 

CMV. Although some of the weed species mentioned here have already been 
reported as a natural host of CMV (e.g. Škorić et al., 2000, Dunich et al., 2022), 

there is still a great need for continued research efforts to study the variability of 

the virus and its host range in a specific geographic region. 
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