
 

 
 

  

 
 

 
 

                                                    

 

 
1 

 

  

PREPARATION, CHARACTERIZATION, AND ANTIBACTERIAL ACTIVITY OF NEWLY BIOSYNTHESIZED 

AMPICILLIN/CHITOSAN/SELENIUM  NANOCOMPOSITE (AMP/CS/SENC) USING FUSARIUM FUJIKUROI PP794203 

AGAINST MULTIDRUG-RESISTANT ESCHERICHIA COLI PP797596 
 

Mayada F. El-Fawal, Amira A. El-Fallal, Mohamed I. Abou-Dobara, Ahmed K. A. El-Sayed, Mohamed M. El-Zahed* 
 

Address(es):  

Damietta University, Faculty of Science, Department of Botany and Microbiology, New Damietta, Egypt. 

 

*Corresponding author: mohamed.marzouq91@du.edu.eg  

 
ABSTRACT 

 
Keywords: Selenium, nanocomposite, biosynthesis, antibacterial activity, Fusarium fujikuroi, Escherichia coli, bacterial resistance 

 
 

INTRODUCTION 

 

Multidrug-resistant bacteria are a growing problem that causes a lot of mortality 
annually. These bacteria have become resistant to the available antibiotics as a 

result of improper overuse and have therefore gained a lot of attention to develop 

or replace these drugs with safe and more effective alternative remedies. This 
problem is now described and known as the antimicrobial resistance (AMR) crisis 

(Abu-Elghait et al., 2021; Hansson & Brenthel, 2022; Puvača & Frutos, 2021). 

On the other hand, many different bacteria and basic eukaryotes frequently develop 
into surface-associated masses known as biofilms (Mohamed et al., 2021). Since 

it acts as a barrier to stop the entry of host defenses and antimicrobial medications 

into pathogenic cells, microbial biofilm is a critical component in many microbial 
diseases (Abdelhameed et al., 2020; Abu-Elghait et al., 2021; Hamed et al., 

2021). The discovery of a wide variety of antimicrobial compounds and the 

effective use of penicillin have resulted in the golden era of antibiotics (Ribeiro 

da Cunha et al., 2019). Escherichia coli is a typically resistant β-lactam bacterium 

like cephalosporin and penicillin (oxacillin and methicillin) (Medeiros et al., 

1974). About 20% - 45% of multidrug-resistant E. coli is resistant to first-line 
antibiotics, such as trimethoprim-sulfamethoxazole, cephalosporins, and 

fluoroquinolones as reported in several epidemiological studies conducted in 

Europe, North America, and South America in the 2000s (Foxman, 2010). Due to 
resistance to these medications, proper therapy is being delayed, which raises 

morbidity and death rates (Pitout, 2012). The carbapenems, temocillin, 

pivmecillinam, tigecycline, and colistin are usually recognized as recommended 
drugs for the treatment of chronic infections with ampicillin (AMP)- and extended-

spectrum β-lactamases (ESBLs)-producing E. coli (Pitout, 2010). However, due 

to the possibility of resistance, these antibiotics should only be used in cases where 
there are no other options. Designing a new antibacterial agent is essential to 

combating bacterial resistance to available antibiotics (Nguyen et al., 2017). 

Nanotechnology is concerned with developing and manipulating materials with a 
size range of 1-100 nm (Salem & Fouda, 2021). Notably, optical, electrical, and 

magnetic characteristics of nanomaterials are significantly influenced by their 

shape and size, mostly owing to the high surface area-to-volume ratio (Benelli et 

al., 2018). Currently, nanomaterials are employed in a variety of fields, such as 

veterinary, pharmaceutical, agricultural, and medical sciences (Thamilarasan et 

al., 2018), sol-gel (Bai et al., 2011), photochemical reduction (Nath et al., 2004), 

physical and chemical vapor deposition (Ren et al., 2004; Wang et al., 2007), 

mechano-sonochemical techniques (Khubulava, 2018), and other top-down and 
bottom-up synthesizing techniques, have all been employed effectively to date in 

order to create novel nanoscale particles of various sizes and shapes. However, the 

harmful limitations are brought on by the costly and risky substances frequently 
utilized in these synthesizing techniques (Saini & Ledwani, 2022). The recently 

emerged field of "biological synthesis" is the result of the productive combination 

of the various aspects of nanotechnology and biotechnology. In this developing 
field, microorganisms like bacteria, fungi, yeasts, and plants were used to 

synthesize biogenic nanoparticles (NPs) either intracellularly or extracellularly, 

where biomolecules function as reducing and stabilizing agents (Boroumand 

Moghaddam et al., 2015). Intracellular approaches necessitate more time- and 

money-consuming extraction procedures as well as additional purification steps 

(Nguyen et al., 2023; Singh et al., 2020). Numerous benefits come with the 
fungus-mediated green NPs formation, including straightforward scaling up, 

simple processing, viability from an economic standpoint, processing of biomass, 

and recovery of significant surface distances with the best mycelia expansion 
(Wadhwani et al., 2016). Moreover, fungi secrete higher amounts of proteins than 

other microorganisms that act as reducing agents for NPs synthesis (Anil Kumar 

et al., 2007).  NPs synthesis is achieved by  the bioreduction of bulk materials to 
their elemental forms, which is induced by functional groups like amines and 

alkanes that are extensively present in metabolites such as flavonoids, tannins, 

alkaloids, steroids, and terpenoids (El-Zahed et al., 2023; Menon et al., 2019). 
Selenium (Se) is an essential trace element that is known as being important for 

the metabolism of thyroid hormones and other vital metabolic processes in the 

human body. Because of its connection to the immune system and potential to cure 
cancer, Se is frequently utilized as a dietary supplement (Fairweather-Tait et al., 

2010; Liu et al., 2009). Proteins and Se were joined to generate seleno-proteins, 

which are crucial as antioxidant catalysts (Abdelaleem et al., 2016). Additionally,  
Se was also discovered to be a part of detoxifying enzymes like glutathione 

peroxidase and thioredoxin reductase (Okuno et al., 2001; Zhang et al., 2005), 

which remove heavy metals from the body, based on the electronic properties of 
Se ions (Menazea, 2020; Youness et al., 2018). At the nanoscale, particles have a 

greater surface-to-volume ratio, which exposes more of their surface, enhancing 

Nowadays, nanobiotechnology is being used to restrict the development of bacterial resistance, particularly multidrug-resistant strains. 

Applications for selenium nanoparticles (Se NPs) are becoming progressively more widespread due to their broad bioactivity and 
antibacterial action, although few studies report their use as  nanoparticles (NPs) in combination with antibiotics. The present study 

evaluated the combined effects of ampicillin (AMP), chitosan (CS) and Se NPs (AMP/CS/SeNC) against the multidrug-resistant 

Escherichia coli PP797596. Se NPs were biosynthesized using Fusarium fujikuroi (PP794203) in a green, safe, and fast method. 
AMP/CS/SeNC was characterized by UV-Vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), 

Zeta potential, and transmission electron microscope (TEM) analyses. AMP/CS/SeNC revealed a characteristic peak at 280 nm. FTIR 

confirmed the presence of proteins as stabilizing and capping agents. Zeta potential refers to the high stability of AMP/CS/SeNC due to 
an intensive positive net surface charge (+44.3 mV). AMP/CS/SeNC appeared as crystalline-shaped NPs with an average particle size of 

85.32 ± 1.8 nm. AMP/CS/SeNC showed strong antibacterial activity against the tested E. coli and displayed an inhibition zone of 21 ± 

0.06 mm and a significantly minimum inhibitory concentration of 25 µg/ml. In addition, the prepared nanocomposite completely destroyed 

the tested E. coli cells, including the cytoplasmic membrane and cell wall, according to TEM studies. The current study provides a new 

nanocomposite that might be applied to different pharmaceutical products and an exceptional antibacterial potential against multidrug-

resistant bacteria. 
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Se activity more deeply in the nano-regime. It lacks can harm the liver, heart, 

kidneys, skeletal muscle, and testes (Wang et al., 2013), as well as cause 

cardiovascular problems and prostate cancer, whereas long-term Se 

supplementation or an excess of Se dosages exceeding 400 g/day is very hazardous 

to living cells (Kristal et al., 2014; Rayman et al., 2018; Vinceti et al., 2018). In 

order to decrease the toxicity of inorganic Se in the case of living things, selenite 
and selenate ions are reduced to Se NPs (Cepoi et al., 2023). Se nanoparticles (Se 

NPs) may be produced by a variety of microorganisms, according to many reports 

(Singh et al., 2016; Srivastava & Mukhopadhyay, 2015; Wadhwani et al., 

2016). It was reported that the most popular microorganisms for the production of 

Se NPs were bacteria (Presentato et al., 2018; Pyrzynska & Sentkowska, 2022; 

Shakibaie et al., 2010) and fungi (Bafghi et al., 2021; Diko et al., 2020; 

Srivastava & Mukhopadhyay, 2015; Zhang et al., 2019). Only five fungi have 

been shown to be capable of producing Se NPs, namely Aspergillus terreus (Zare 

et al., 2013), Alternaria alternata (Sarkar et al., 2011), Lentinula edodes 

(Vetchinkina et al., 2013), Fusarium sp., and Trichoderma reesei (Gharieb et al., 

1995). Se NPs demonstrated antimicrobial action against common and antibiotic-
resistant phenotypes of both Gram-positive and Gram-negative bacteria 

(Geoffrion et al., 2020), Candida albicans (Kheradmand et al., 2014), 

Trichophyton rubrum (Yip et al., 2014), Pseudomonas aeruginosa, and Proteus 
mirabilis (Shakibaie et al., 2015).  

Chitosan (CS) is a natural polymer that possesses antimicrobial potential against a 

variety of pathogens, including bacteria, fungi, and yeasts (Kong et al., 2010; 

Tayel et al., 2010; Tayel et al., 2011). Two forms of chitosan (solution and film) 

possessed antibacterial properties (Islam et al., 1970; Shameli et al., 2011). 

Because CS film has poor antibacterial activity, it must be combined with other 
antibacterial materials in order to be used in film-based products. CS can be 

combined with NPs of metal to improve its antibacterial action (Wei et al., 

2009). The antibacterial (Raut et al., 2016), antifungal (Sathiyabama & 

Parthasarathy, 2016), antibiofilm (Costa et al., 2017) and anticancer 

(Subhapradha & Shanmugam, 2017) characteristics of CS combined with metal 

and metal oxide NPs are significant. They may also be utilized as biosensors 
(Kaushik et al., 2008), nanofertilizers (Duhan et al., 2017), eliciting agents 

(Chandra et al., 2015), and pesticides (Gabriel Paulraj et al., 2017; Murugan et 

al., 2016, 2017). 
In this study, an innovative amalgamation of biogenic Se NPs produced by 

Fusarium fujikuroi combined with AMP and CS was prepared and examined for 

their antibacterial activity in vitro against multidrug-resistant E. coli. 
 

MATERIALS AND METHODS 

 

Microbial strains and culture conditions 

 

Bacterial strain E. coli (AC: PP797596) and fungal strain F. fujikuroi (AC: 
PP794203) were obtained from the Microbiology Lab, Botany and Microbiology 

Department, Faculty of Science, Damietta University, Egypt. 

 
Green synthesis of Se NPs 

 

The biological preparation of Se NPs was carried out according to Islam et al. 

(2022) with some modifications. Briefly, 250 ml of malt extract glucose yeast 

extract peptone (MGYP) broth medium (Abbas & Abou Baker, 2020), 0.03 M 

sodium selenite (Na2SeO3), 4 discs (5 mm) of F. fujikuroi were mixed, adjusted to 
pH 6, incubated at 30 ±2℃ for 2-3 days at 150 rpm until the appearance of a red 

color, which indicated the Se NPs formation. Then, the suspension was collected 

by centrifugation at 5000 rpm for 10 min., and the residue was washed three times 

with distilled H2O to eradicate excess impurities, then centrifuged and dried. 

 

Synthesis of ampicillin/chitosan/Se nanocomposite 

 

An aliquot of 30 mg of Se NPs was dispersed in 10 ml of distilled H2O and 

ultrasonicated for 15 min by using an ultrasonic bath (Elmasonic S100H, Germany, 
50/60 Hz). 30 mg chitosan (MW 50–190 KDa, deacetylation degree: ≥85%, 

Sigma-Aldrich, USA) was prepared in 2.5% acetic acid (pH 8), mixed with a 
solution of Se NPs in a ratio of 1:1 v/v at 25°C. Then, 30 mg of antibiotic was 

added to the reaction mixture and stirred at 600 rpm using a magnetic stirrer/hot 

plate (Stuart UC152, UK) for 15 min. to obtain a transparent solution. After 6-8 h., 
drug-capped loading NPs were centrifuged at 5000 rpm and the residue was rinsed 

three times with distilled H2O.  The supernatant was neglected, and the drug-

capped NPs residue was dried in an oven at 40-50℃. The final product was kept 
for the next step. 

 

Characterization studies  

 

The spectrum of ampicillin/chitosan/Se nanocomposite (AMP/CS/SeNC) was 

detected by using UV-Vis spectrophotometry (Double beam spectrum UV–Vis 
spectrophotometer V-760, JASCO, UK), X-ray diffractometer (XRD, X-ray 

diffractometer, model LabX XRD-6000, Shimadzu, Japan), and Fourier transform 

infrared spectroscopy (FT/IR-4100typeA). AMP/CS/SeNC was analyzed using 

Malvern Zetasizer Nano-ZS90 (Malvern, UK), and transmission electron 

microscopy (TEM, JEM-2100, Japan). 

 

Antibacterial activity using agar well diffusion method 

  

The antibacterial action of tested compounds was investigated according to the 
Clinical Laboratory Standards Institute (CLSI, 2017). 100 μl of tested bacterial 

suspension (2.5 × 108 CFU.ml-1) was added to cold melted Mueller-Hinton agar 

(MHA) medium (Oxoid, UK) at the time of pouring the plates in triplicate. After 
solidifying the agar plates, 100 μl of a unified concentration (150 μg/ml) of CS, 

AMP, Se NPs, and AMP/CS/SeNC was added separately into punched holes (5 
mm) under aseptic conditions and then incubated at 37°C for 24 h. Then, the 

inhibition zones of bacterial growths were measured in mm.  

 
Minimum inhibitory concentration (MIC) 

 

The MIC tests of the tested compounds against treated bacterial strains were 
evaluated according to CLSI (2000). Different concentrations (1-200 μg/ml) of 

CS, Se NPs and AMP/CS/SeNC were added into Mueller-Hinton broth (MHB) 

medium flasks inoculated by 200 µl (l2.5 × 108 CFU.ml-1) tested bacteria and 
incubated at 37°C and 150 rpm for 24 h. Untreated bacteria and penicillin-treated 

bacteria were used as controls. Bacterial growth rates were measured 

spectrophotometrically (λ: 600 nm) against controls.  
 

Ultrastructural analysis of AMP/CS/SeNC-treated E. coli 

 

The bacterial cell cultures were exposed to AMP/CS/SeNC (MIC value) for 2 h at 

37°C in MHB. Bacterial cells were washed, fixed with 2.5% glutaraldehyde and 

0.1 M cacodylate buffer, pH 7, and sent to the Central Laboratory, Electron 
Microscope Unit, Faculty of Agriculture, Mansoura University, Egypt, for 

observing and studying their ultrastructure. Upon the removal of the fixative, 0.1 

M buffer was introduced for washing, and the sample was afterward fixed for 90 
min using 2% osmium tetroxide. A graded series of ethanol was used to dehydrate 

the fixed cells. After being dried, the cells were immersed in a 1:1 combination of 

Epon-Araldite for 1 h, and then the mixture polymerized for 24 h at 65°C. The cells 
were sectioned using an ultra-microtome (50 μm), double-stained with lead citrate 

and uranyl acetate, and then seen on carbon-coated copper grids (Type G 200, 3.05 

μM diameter, TAAP, U.S.A.) using a TEM (JEOL JEM-2100, Japan) (El Zahed 

et al., 2024).  

 

Statistical analysis 

 

The data were tested using the ANOVA test and SPSS software version 18. The 

significance level was established at 0.05. All experiments were done in triplicate. 
Each result was displayed together with its standard deviation (SD) and mean. 

 

RESULTS AND DISCUSSION 

 

Synthesis and characterization of AMP/CS/SeNC 

 
Biosystems aimed to use microorganisms in different biotechnology applications 

including nanomaterial production (Mohamed & El‑Zahed, 2024). In a 

biosystem, different microorganisms including fungi, bacteria and algae are used 
as biocatalysts to convert bulk matter into nanoscaled materials. The use of 

different fungi in biosystem is common and can be beneficial because they can 

break down complex organic matter that other microorganisms cannot, thus 

increasing the efficiency of the system. Fusarium sp. is known to produce various 

secondary metabolites, including carotenoids that act as strong bioreducing agents 

(Gharieb et al., 1995). The current study demonstrated the use of F. fujikuroi as a 
new nano-factory for Se NPs. Se NPs biosynthesis may be conducted in two main 

ways: employing living cells or various cell extracts. In both situations, the creation 

of NPs is dependent on the matrix's reduction potential. Two key enzymes, selenate 
reductase and selenite reductase, are responsible for the intracellular synthesis of 

Se NPs, whereas other chemical substances with reducing potential are responsible 
for extracellular production (Afzal & Fatma, 2021). Due to the biomolecules' 

natural covering, biogenic Se NPs are more stable and do not agglomerate 

(Wadhwani et al., 2016).  
The synthesis of Se NPs was initiated when the colorless solution changed to a red-

orange color known as a "brick" (Figure 1). In the present study, the synthesis of 

Se NPs was confirmed by the Surface Plasmon Resonance feature (SPR), which is 
illustrated by their unique λmax at 252 nm in the UV-visible spectrum, indicating a 

good dispersion of particles in the noncolloidal (Figure 1). Our result is consistent 

with the findings of  Abbas & Abou Baker (2020) and Islam et al. (2022) who 
confirmed the absorption peaks of Se NPs appeared in the range of 240-270 nm. 

The maximum absorbance of AMP/CS/SeNC colloidal suspensions was shifted to 

280 nm which might be due to the binding with CS and AMP (Nasir et al., 2017).  
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Figure 1 UV-Vis spectrum and visible color change during the biosynthesis of Se 

NPs and AMP/CS/SeNC. (A) Color of the reaction mixture at the beginning of 

experiment. (B) Color of the reaction mixture after the incubation time. 

 

The crystallographic structure of the mycosynthesized AMP/CS/SeNC was 
determined using XRD studies (Figure 2). The diffraction patterns of 

AMP/CS/SeNC showed sharp and intense peaks at 2θ angles of 23.64°, 29.8°, 

34.48°, 43.73°, 45.38°, 59.23°, and 66.2° which were indexed as 100, 101, 222, 
102, 111, 112 and 210 planes, respectively, that correspond to the standard JCPDS 

data (JCPDS No. 06-0362). Moreover, the Scherrer equation was utilized to 

determine the crystallite size of AMP/CS/SeNC based on the FWHM of the most 
potent peak, which was 85.32 ± 1.8 nm. 

 

 
Figure 2 X-ray diffraction pattern of AMP/CS/SeNC. 

 

The AMP/CS/SeNC and Se NPs FTIR spectra for this investigation (Figure 3) 
matched the Gharieb et al. (2023) and Sonkusre et al. (2014) results. The 

emergence of significant broad peaks around 3429 cm-1 (Se NPs) and 3387 cm-1 

(AMP/CS/SeNC) indicates hydroxyl (O–H) groups and N–H stretching. Moreover, 
the FTIR spectra showed bands at 2937 cm-1 (Se NPs) and 2993 cm-1 

(AMP/CS/SeNC) which indicated C–H stretching. The peaks at 2358 cm-1 (Se 

NPs) and 2632 & 541 cm-1 (AMP/CS/SeNC) are observed and correlate to the 
presence of proteins. Bands at 1645cm-1 (Se NPs) and 1733 cm-1 (AMP/CS/SeNC) 

were associated with proteins' amide I (N–C=O-stretching mode). The more 
complex amide band is located close to 1566 &1410 cm-1 (Se NPs) and 1459 & 

1376 cm-1 (AMP/CS/SeNC) correspond to amide II (N–H bending mode) and 

amide III. The stabilization of metal ions and the synthesis of reduction were 
carried out by the amide groups, which indicated the existence of enzymes (Prasad 

& Selvaraj, 2014). According to Díaz-Visurraga et al. (2012), the finding 

suggests that the NPs are linked to molecules containing these functional groups. 
Therefore, based on this data, it is possible that the proteins created a capping agent 

on top of the Se NPs, which may have contributed to their stability. The C–O 

stretching mode might be the cause of the bands 1245 & 1085 cm-1 (Se NPs) and 
1224, 1127 & 1045 cm-1 (AMP/CS/SeNC) (Khiralla & El-Deeb, 2015). Se 

stretching vibration (C–Se) explains the appearance of 606 cm-1 (Se NPs) and 640 

cm-1 (AMP/CS/SeNC). Our results were confirmed by Qian et al. (2017), who 
showed that the peak at 493.7 cm-1 is attributed to the Se-Se vibration. Other Se-

related bonds are identified at C-Se (611.8 cm-1). 

 

 
Figure 3 FTIR spectra pattern of synthesized Se NPs, CS, AMP and 

AMP/CS/SeNC. 

 
Nanomaterials' impacts on medical applications are mostly determined by their 

size and stability. Thus, zeta potential must be used to investigate the stability and 

size distribution of the NPs. Colloid stability is significantly influenced by the 
surface charge, which may be studied using zeta potential data; a comparatively 

low zeta potential may be indicative of nanoparticle agglomeration. Being 

significantly positively charged or negatively charged is correlated with a potential 
of greater than +30 mV or less than -30 mV, respectively (Lowry et al., 2016; 

Marsalek, 2014). In the present study, an intensive positive net surface charge at 

+44.3 mV was observed, so this is evidence of the high stability of AMP/CS/SeNC 
(Figure 4). On the other hand, previous studies recorded the negative charge of the 

biosynthesized Se NPs which was around -20 mV as reported by Hussein et al. 

(2022), who used different endophytic fungi for Se NPs biosynthesis, including A. 
quadrilineatus, A. ochraceus, A. terreus, and F. equiseti. 

 

 
Figure 4 Zeta potential of AMP/CS/SeNC. 
 

The TEM method is an imperative instrument to evaluate the size and shape of the 

produced NPs. TEM images clearly show the crystalline and uniformly distributed 

NPs varying from 80 nm to 90 nm in diameter, which matches the Scherrer 

equation results (Figure 5). According to Gharieb et al. (2023) the size of 
individual synthesized Se NPs by F. oxysporum ranged between 60–97 nm. Sarkar 

et al. (2011) showed that the diameter of Se NPs by A. alternata was measured in 

the range of 30–150 nm. In addition, the study carried out by Abbas & Abou 

Baker (2020) on bio-Se NPs by F. semitectum, showed that their diameter ranged 

from 32.80 nm to 103.82 nm. Furthermore, the average particle size of the 

biosynthesized Se NPs produced by F. oxysporum was 42nm (Islam et al., 2022). 
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Figure 5 Transmission electron microscope of AMP/CS/SeNC. Bars scale = 200 
nm. 

 

Antibacterial activity and MIC 

 

The antibacterial activity of Se NPs, AMP, and CS was individually shown and 

compared with the antibacterial action of AMP/CS/SeNC in Figure 6 and Table 1. 
The results showed that AMP/CS/SeNC had a bigger effect on the multidrug-

resistant E. coli (AC: PP797596) bacteria than Se NPs and AMP by itself. MIC 

values of AMP/CS/SeNC were found to be 30 µg/ml compared to CS; 190 µg/ml, 

AMP; 200 µg/ml, and Se NPs; 160 µg/ml (Figure 7). All tested compounds 

displayed a dose-dependent behavior of antibacterial potential. 

Many investigations confirmed that all the tested Gram-positive strains were 
sensitive to Se NPs; however, the Gram-negative bacteria showed significant 

resistance to Se NPs within a wide range of concentrations, according to Tran et 

al. (2016) and Souza et al. (2022). Furthermore, Guisbiers et al. (2016) reported 
that 50 ppm of the Se NPs sample exhibited the highest inhibition rate (46% of E. 

coli growth) after 24 h. On the other hand, Nguyen et al. (2017) showed that the 

number of treated cells of E. coli O157:H7 after 10 h of incubation reduced 
marginally (less than 1 log CFU/ml) in comparison to the control, with a 

concentration of Se NPs (50 mg/ml). This suggests that Se NPs had a negligible 

effect on E. coli O157:H7. Additionally, Vahdati & Tohidi Moghadam, (2020) 
recorded that the highest inhibition (41%) was observed at 660 μg.ml−1 of Se NPs 

against E. coli. 

 
Figure 6 The agar well diffusion method of AMP/CS/SeNC compared to CS, 
AMP, and Se NPs at the concentration of 150 µg/ml against the tested E. coli strain. 

 

 
 

 

 

Table 1 Antibacterial activity of different compounds against the tested E. coli 

strain 

Compounds Concentration (µg/ml) 
Inhibition zone in mm (mean 

± SD) 

CS 

50 -ve 

100 -ve 

150 7 ± 0.14 

Se NPs 

50 -ve 

100 -ve 

150 8 ± 0.19 

AMP/CS/SeNC 

50 21 ± 0.06 

100 24 ± 0.03 

150 27 ± 0 

Ampicillin  

50 -ve 

100 -ve 

150 6 ± 0.21 

 

 
Figure 7 Minimum inhibition concentration of AMP/CS/SeNC compared to CS, 

AMP, and against the tested E. coli strain. 

 
Effect of AMP/CS/SeNC on E. coli ultrastructure 

 

Morphological characteristics of the ultrastructure of E. coli were altered due to 
the effects on cells subjected to AMP/CS/SeNC (Figure 8). Untreated cells 

appeared as intact rods with incorporated cell walls. On the contrary, the cell walls 

of the AMP/CS/SeNC-treated cells were recognized to be wrinkled and crushed, 
and a clear visible separation between the plasma membrane and cell wall was also 

observed. In addition to the presence of completely decomposed cells as a result of 

the AMP/CS/SeNC effect. 
 

 
Figure 8 TEM micrograph of AMP/CS/SeNC-treated E. coli cells; (B) compared 

to control cells; (A). CW; cell wall, Cy; intact and homogenous cytoplasm, Ly; 
complete lysed cells.  Note, the binary fission of bacterial cells at the white 

arrowhead (control cells) and the separation between cell wall and plasma 

membrane at the yellow arrows (treated cells).  
 

The potential mechanism for inhibiting E. coli bacteria is that Se NPs bind via 
chemisorption (Kieliszek et al., 2015) along with penetrating the outer membrane 

containing lipopolysaccharides, which are covalently bonded to the cell's 

peptidoglycan by Braun's lipoprotein (Silhavy et al., 2010; Mohamed & 

El‑Zahed, 2024). Three enzymes, preprolipoprotein diacylglyceryl transferase, 

prolipoprotein signal peptidase, and apolipoprotein N-acyltransferase, contribute 

to the essential lipoprotein biosynthesis pathway in E. coli bacteria. It has been 
demonstrated that these enzymes are critical to E. coli survival. Therefore, by 

altering the function of these enzymatic transporters, Se NPs inhibit E. coli. As a 

result, Se enters far more effectively by chemisorption, a process that involves the 
diacyl and triacyl forms of lipoproteins (Nakayama et al., 2012). Thus, the cell 

wall and the polysaccharide components that make up the wall act as a barrier that 

restricts the amount of Se NPs that may enter the inside of the cell.  
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The low-cost AMP/CS/SeNC nanocomposite's enhanced antibacterial efficiency, 

lowered dosage needs, and effectiveness against multidrug-resistant bacteria make 

it more cost-effective than traditional therapies. Conventional ampicillin is less 

cost-effective in the long term because of its greater dosage requirements, chance 

of treatment failure, and requirement for fighting growing resistance. The current 

study provides the AMP/CS/SeNC nanocomplex as a cost-effective and 
sustainable therapy choice which could provide higher value in the form of 

improved health outcomes, less hospitalization expenditures, and less 

environmental impact than other chemical antibacterial agents. However, further 
study is required to determine the ideal Se dosage to increase ampicillin's 

effectiveness while lowering the risk of Se toxicity. Bioavailability and clinical 
risks should be examined between various statements (oral, intravenous). It's 

critical to evaluate how effectively Se and ampicillin work together to combat a 

range of multidrug-resistant bacteria.  
 

CONCLUSIONS 

 
In summary, the current study demonstrated the potency of F. fujikuroi PP794203 

for the first time reported to mycosynthesize of Se NPs. The synthesized 

nanocomposite (AMP/CS/SeNC) exhibited antibacterial potential against the 
multidrug-resistant E. coli PP797596. The ultrastructure of the treated E. coli cells 

confirmed the high antibacterial potential of the AMP/CS/SeNC. Finally, the 

biosynthesized AMP/CS/SeNC exhibited generally acceptable effectiveness and 
stability, thus it is recommended to be used as an interesting bacterial growth 

inhibitor. Furthermore, the toxicity, antimicrobial activity, and stability of 

AMP/CS/SeNC needs to be studied in vivo with an animal model. 
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