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INTRODUCTION 

 

Using lignocellulosic substrates such as forest residues, agricultural by-products, 
and energy-producing crops shows significant potential for bioenergy production. 

These resources are abundant globally and address concerns about a connection 

between food shortages and first-generation biofuels derived from edible sources. 
Elephant grass, also named Napier grass, is a versatile and productive forage grass 

native to Southeast Asia and Africa. Its substantial yield makes it popular for 

livestock feed and bioenergy purposes. With an energy output-to-input ratio of 
approximately 25:1, it is among the most beneficial energy crops for creating cost-

effective and efficient bioenergy systems (Jain, 2023). In India, Napier grass 
yields an output per acre each year ranging from 100 to 200 tons (Bhakar and 

Ram, 2019), surpassing other energy grasses such as miscanthus and switchgrass, 

which typically yield 25 to 35 tonnes per hectare. Napier grass is a renewable 
biomass resource that helps reduce reliance on fossil fuels and contributes to 

sustainable energy production. The composition of typical Napier grass is as 

follows: cellulose, 35–39%; silane, 19–23%; lignin, 15–19% (on a dry weight 
basis) (Narinthorn et al., 2019). 

Lignocellulosic biomasses are renewable bioresources abundantly available on 

earth and are carbon-neutral. However, their widespread utilization is hindered by 
strong bonds among their constituents—cellulose, hemicellulose, and lignin. 

Several pretreatment procedures are available and employed to effectively separate 

these interconnected components, maximizing lignocellulosic biomass potential, 
particularly for bioethanol production (Nauman Aftab et al., 2019). Second-

generation bioethanol is derived from lignocellulosic feedstocks through 

saccharification, microbial fermentation, and subsequent product recovery. 
Biomass resources worldwide can be separated into four main groups: municipal 

solid waste, wood product industry wastes, agricultural residues, and dedicated 

energy crops. Agricultural residues, which are abundant and rich in lignocellulose, 
are a significant renewable biomass resource for bioethanol production, often 

generated as by-products during or after agricultural crop processing (Saini et al., 

2015). 
Pretreatment leads to physical, biological, and chemical changes in the structure of 

biomass, highlighting the importance of choosing the right pretreatment method. 

This initial phase is crucial for breaking down the strong cell wall barrier, 
increasing sugar production through enzymatic hydrolysis, while decreasing the 

degradation of carbohydrates and the creation of inhibitory compounds (Rasid et 

al., 2021). Important considerations for a successful pretreatment process include 

the use of cost-effective chemicals, minimal chemical consumption, and 
preservation of cellulose and hemicellulose integrity, low energy demand, cost-

effective size reduction, and the creation of reactive cellulosic fibers. According to 

Nauman Aftab et al. (2019), primary pretreatment techniques include chemical, 
physical, thermophysical, thermochemical, and biological procedures. Alkali 

pretreatment is a method that involves the utilization of alkaline chemicals such as 

sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide 
(Ca(OH)2), and ammonia hydroxide (NH4OH) to disrupt the lignocellulosic 

biomass structure (Fuertez et al., 2021). Typically conducted under high 
temperatures and pressures, this process enhances the accessibility of 

hemicellulose and cellulose to enzymes, facilitating their conversion into biofuels 

or other valuable products (Patrick et al., 2015). Alkaline pretreatment is widely 
accepted as a leading method for processing lignocellulosic substrate for 

bioethanol generation because of its ease and high efficacy (Nguyen et al., 2019). 

A crucial aspect of practical ethanol production technology is the efficient 
conversion of inexpensive lignocellulosic biomass into fermentable sugars. Alkali 

pretreatment is commonly used to extract hemicelluloses and lignin from 

lignocellulosic biomass (Kim et al., 2016). Researchers discovered that the yield 
of reducing sugars from alkali-pretreated cotton stalks was appreciably higher 

compared to acid-pretreated stalks and control samples, with a twofold increase 

(Malik et al., 2020). Anuradha and Sampath (2022) explored various 
pretreatment methods, including acids (H₂SO₄ and HCl), alkalis (NaOH and KOH), 

and organic solvents (ethanol and methanol), for sugar production from rice husk. 

Their study revealed that a 4% NaOH pretreatment effectively breaks down the 
biomass, leading to a high sugar recovery. In another study, Lee et al. (2021) used 

response surface methodology (RSM) to investigate the optimum KOH 

pretreatment parameters to enhance the enzymatic digestibility of chestnut shells 
(CNS). The results showed that KOH pretreatment significantly increased the 

glucan content and enzymatic digestibility of CNS by 1.8-fold and 3.8-fold, 

respectively, emphasizing the substantial impact of KOH pretreatment on 
improving enzymatic hydrolysis. Furthermore, Premkumari et al. (2019) 

observed that pretreating ground cotton stalk with 2% KOH for 1 h at 120°C 

resulted in a higher sugar yield, demonstrating that even low KOH concentrations 

The recalcitrance of lignocellulosic feedstock needs to be altered for to produce fuels and chemicals. Pretreatment is used to enhance the 

reactivity of cellulose and the digestibility of biomass, resulting in the effective generation of fermentable sugars. Potassium hydroxide 

(KOH) is particularly effective at selectively removing lignin from biomass without excessively degrading cellulose and hemicellulose. 
Moreover, KOH is generally less corrosive than sodium hydroxide (NaOH), leading to lower maintenance costs for pretreatment 

equipment. In present study, Napier grass was utilized as the substrate for reducing sugar production. Proximate analysis indicated that 

Napier grass contains approximately 28.50±0.12% hemicellulose, 34.15±0.08% cellulose and 26.41±0.04% lignin. With the use of the 
Box-Behnken Design (BBD) method, pretreatment conditions were improved. The ideal conditions for KOH pretreatment of Napier grass 

were determined to be 6% KOH, 180 °C temperature, and a pretreatment time of 120 min. Higher yields of reducing sugars (43.29 g/L) 

were achieved by this optimized condition. By analyzing the experimental data, ANOVA helps in developing a reliable model that predicts 
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are effective for hydrolysis, with carbohydrate retention of 71.51% under these 

conditions. 

Design of Experiments (DOE) is a statistical methodology used to systematically 

plan, conduct, analyze, and interpret experiments to obtain valid and reliable 

results. DOE is essential for controlling input factors or variables to determine their 

relationship with outputs (responses), thereby ensuring product or process quality. 
This methodology helps researchers identify optimal experimental conditions 

(Lamidi et al., 2024). The most commonly used DOE method is RSM based on 

the Box-Behnken Design (BBD). BBD combines a two-stage factorial plan with 
an incomplete block plan, utilizing coded variables at three levels (−1, 0, and +1). 

One advantage of BBD is that it avoids combinations where all variables 
simultaneously take on extreme edge values, preventing experiments under 

extreme conditions. Additionally, BBD offers a more straightforward way to 

organize and analyze results (Gadomska-Gajadhur et al., 2020; Gundogdu et 

al., 2016), reducing both time consumption and the number of experimental runs 

required. RSM consists of mathematical and statistical techniques designed to fit a 

polynomial equation to experimental data (Aydar, 2018). The benefit of the BBD 
is that it works to prevent unsatisfactory outcomes in extreme situations by 

avoiding combinations where all elements are at their maximum or lowest values. 

The BBD is particularly suitable for RSM because it allows for: (i) estimation of 
quadratic model parameters; (ii) construction of sequential designs; (iii) detection 

of model lack of fit; and (iv) use of blocks (Ferreira et al., 2007). 

Numerous studies have examined diverse chemical pretreatment procedures for 
converting lignocellulosic biomass, like Napier grass, into biofuels and other 

valuable products. Using techniques such as RSM and BBD, previous researchers 

(Chinwatpaiboon et al., 2023; Kang and Haslija, 2019) have investigated the 
interactions between various factors. However, there is a lack of information on 

the application of RSM for optimizing the conditions of KOH pretreatment to 

maximize the production of reducing sugars from Napier grass. This study aims to 
assess the effectiveness of KOH pretreatment in improving the processing of 

Napier grass and increasing the yield of reducing sugars. Additionally, a 

mathematical model based on BBD and RSM was developed and applied to predict 
reducing sugar yields and determine the optimal pretreatment conditions. The use 

of KOH in a pretreatment method is advantageous because of its environmental 

friendliness, cost-effectiveness, and the fact that it does not require the 
neutralization of raw materials. 

 

MATERIALS AND METHODS  

 

Collecting and preparing Napier grass biomass 

 
Napier grass was gathered from local agricultural fields around Tirupati, India in 

May month. The grass was chopped into small pieces, air-dried, and then further 

dried in an oven at 60°C for 12 h. The dried Napier grass was then ground into a 
fine powder using a mixer grinder. The resulting biomass powder was stored in an 

airtight polyethylene bag to prevent moisture absorption. 

 
Analysis of chemical composition 

 

The primary components of the biomass such as lignin, cellulose, and 
hemicelluloses were assessed using the acid detergent fiber (ADF) and neutral 

detergent fiber (NDF) methods. The Association of Official Analytical Chemists 

(AOAC) standard methods 973.18 (AOAC, 1990) and 992.16 (AOAC, 1990) were 
used to determine lignin, ADF, and NDF. The percentages of cellulose and 

hemicellulose were indirectly calculated from the ADF and lignin percentages, as 

outlined by Mani et al. (2006). 

 

Box-Behnken method 

 
We used Response Surface Methodology (RSM), a statistical technique, to 

optimize the conditions for reducing sugar production. Specifically, we employed 

the BBD of RSM to refine the variables considered in this study. We conducted 
experiments based on the design in 250 mL conical flasks, using Napier grass 

biomass as the solid substrate. After reviewing the literature, we identified that 
three factors were the most important: KOH concentration (A), temperature (B), 

and pretreatment time (C). Each variable was examined at three levels as presented 

in Table 1. Using the BBD, the software planned a total of 17 experiments to 
represent each variable at these three levels (Table 2). We utilized a quadratic 

equation to model the correlation between reducing sugar yield and the 

independent variables, as presented in Equation 1. 
Y = b0 + b1A + b2B + b3C + b11A

2 + b22B
2 + b33C

2 + b12AB + b13AC + b23BC   (1) 

In above equation, Y represents the predicted response, b0 is the intercept, b1, b2, 

and b3 are the linear coefficients; b11, b22, and b33 represent the squared coefficients, 
and b12, b13, and b23 are the interaction coefficients. The results of the trial were 

examined and interpreted by Design-Expert software (Design-Expert, 2023). 

 
Sample extraction and analysis 

 

After the experiment was finished, the pretreated blend was spun at 10,000 rpm for 
8-10 min to separate the solid and liquid parts. After that, the liquid portion was 

collected and neutralized using 1M H2SO4 solution. After neutralization, the liquid 

was filtered through a 0.2 μm membrane filter, and the resulting filtrate was used 

to examine the reducing sugars. 

 

Model validation studies 

 
Experiments should be carried out to confirm the accuracy of the theoretically 

determined models under ideal conditions. Model validation involves calculating 

the experimental error between the theoretical predictions and the actual 
experimental results. 

 
Enzyme source 

 

In our investigation of biomass saccharification, we used commercially available 
Aspergillus niger cellulase (≥0.3 units/mg solids) and Trichoderma reesei xylanase 

(100-300 units/mg protein) purchased from Sigma Aldrich, India. 

 
Preparation of yeast inoculum    

 

Saccharomyces cerevisiae NCIM 3455 was cultivated at 30°C for 24 h in a basic 
medium with an initial pH of 5.5. The medium consisted of glucose (20.0 g/L), 

polypeptone (1.0 g/L), yeast extract (1.0 g/L), KH2PO4 (1.0 g/L), and MgSO4 (3.0 

g/L). After the 24 h incubation, the suspension of S. cerevisiae cells was collected. 
The cultured S. cerevisiae showed a cell density of 6.5 × 107 cells per milliliter. 

 

Simultaneous saccharification and fermentation (SSF)  

 

To carry out the SSF, separate experiments were conducted using high and low 

KOH pretreated Napier grass. Both substrates went through the following process: 
5g of pretreated substrate was added to 100 ml of distilled water in 250-ml conical 

flasks, with the pH adjusted to 5.0 using 0.01 M H2SO4. Next, 1 ml of cellulase 

and 1 ml of xylanase were added to the reaction solution as a pre-hydrolysis step, 
and the mixture was continuously shaken at 350 rpm for 24 h at 45 to 50 °C. The 

enzyme mixture's suggested loading range provided by the manufacturer, Sigma 

Aldrich, India, was used as the basis. After the pre-hydrolysis stage, 1 ml of yeast 
inoculum and 0.2 ml of a 24% urea solution were added. Nitrogen gas was injected 

into the flask's headspace for 1 min to ensure anaerobic conditions and allow 

carbon dioxide (CO2) emission. The fermentation was then conducted at 32 °C 

with continuous agitation at 300 rpm for 5 to 7 days. There was no further pH 

control. The flasks were weighed daily to monitor fermentation by measuring the 

weight loss caused by CO2 release. Each SSF experiment was performed in 
duplicate, and an enzyme-free reference experiment was conducted in parallel. The 

total amount of ethanol produced at the end of fermentation was determined along 

with the concentration of reducing sugars using gas chromatography (GC) and 
Dinitrosalicylic Acid (DNSA) methods. 

 

Reducing sugar estimation 

 

To test for reducing sugars, mix about 0.3 mL of DNSA reagent with 0.3 mL of 

the test solution. Then, heat this combination by placing it in hot water for 5 to 10 
min. If there are reducing sugars present, the yellow solution will change to orange 

or red. After heating, dilute the mixture by adding 3 mL of distilled or deionized 

water. Next, transfer the diluted solution into a cuvette and use a green light or 
filter to measure the absorbance at a wavelength of 500–560 nm, ideally at 540 nm 

(Miller, 1959). 

 

Ethanol estimation by gas chromatography (GC)  

 

The Agilent 6890 system, installed with a flame ionization detector (FID), was 
employed. To detect ethanol, the following conditions were set for column 

chromatography: a glass-packed GC Column (compatible with Agilent, 

Configuration "A"), with a 5% Carbowax 20M phase, 80/120 Carbopack B AW 
support matrix, and dimensions of 6.0 ft (1.8 m) x 1/4 in. x 2.0 mm. A consistent 

flow rate of 20 mL/min of nitrogen was utilized as the carrier gas, and a steady 
flow rate of about 40 mL/min of hydrogen was utilized as the fuel gas. An internal 

standard was prepared using secondary butyl acetate (Anthony, 1984). 

 
RESULTS AND DISCUSSION 

 

Proximate analysis of substrate 

 

Untreated Napier grass was evaluated for its chemical composition, revealing the 

following percentages: 86.04±1.20% moisture, 28.50±0.12% hemicellulose, 
34.15±0.08% cellulose, 26.41±0.04% lignin, and 13.22±0.16% ash content (Table 

3). The present achieved values differ from those reported in other studies. 

Kamarullah et al. (2019) conducted a proximate analysis of untreated Napier 
grass and reported 34.14% hemicellulose, 46.58% cellulose, and 22.25% lignin. 

Meanwhile, Montipo et al. (2018) found the grass to contain 20.62% 

hemicellulose, 33.60% cellulose, 18.42% lignin, and 12.25% ash content. These 
variations in composition could be influenced by factors such as harvesting age, 
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nutritional inputs, and cultivation location, as noted by Kataria et al. (2017) and 

Sladden et al. (1991). Although hemicellulose and cellulose contents generally 

align with previous studies, these components may fluctuate over time; while the 

overall carbohydrate content remains relatively stable (Takara and Khanal, 

2015). Due to its high hemicellulose and cellulose content and low lignin and ash 

percentages, Napier grass is a promising option for bioethanol production. 
 

Table 1 Chemical composition of Napier grass 

 Consequents  Percentage (%) 

1 Moisture 86.04±1.20 
2 Ash 13.22±0.16 

3 Cellulose 34.15±0.08 
4 Hemicellulose 28.50±0.12 

5 Lignin 26.41±0.04 

*Cellulose, hemicelluloses, lignin and ash was determined on dry weight basis. 

 

Box-Behnken design  

 

The experimental design and the variables examined at three levels are presented 
in Table 1. Experiments were performed to determine the theoretical and 

experimental yield of reducing sugars (g/L) according to the experimental design 

is given in Table 2. The RSM based BBD was employed to predict the optimal 

levels of key factors and their combined effects. The highest reducing sugar yield 

of 43.29 g/L was achieved at the optimal conditions of 180 °C temperature, 6% 

KOH concentration, and a pretreatment time of 120 min. In compare, the lowest 

reducing sugar yield of 10.24 g/L was observed when the conditions were 60 °C 

temperature, 2% KOH concentration, and a pretreatment time of 75 min. 

The analysis of variance produces a regression equation that depicts the response 
level based on three independent factors. A quadratic model was used to examine 

the data using the least squares method, incorporating all terms regardless of their 

statistical significance. The resulting equation is as follows: 
 

Reducing sugars (g/L) = 22.17+6.95A+7.37B+5.00C–2.06A2+ 
0.82B2+2.85C2+3.31AB+2.11AC+3.56BC    (2) 

 

In above equation, Y denotes the determined response (Reducing sugar, g/L), while 
A, B, C, and D are coded independent variables. Predictions for the response at 

specific levels of each factor can be made using the coded factors equation. The 

high levels of the factors are typically denoted as +1, and their low levels as −1. 
By comparing the factor coefficients, the coded equation can be used to verify the 

relative effect of the components. 

 

 

Table 2 Actual level of variables tested with the Box-Behnken Design (BBD) 

Factor Name Units Minimum Mean Maximum Coded 
Low 

Coded 
middle 

Coded 
High 

Std. 
Dev. 

A KOH 

concentration 

% 

w/v 

2.00 6.00 10.00 −1 0 +1 2.83 

B Temperature °C 60.00 120.00 180.00 −1 0 +1 42.43 
C Pretreatment 

time 

min 30.00 75.00 120.00 −1 0 +1 31.82 

 
Table 3 Experimental design in term of actual factors and results of the BBD 

model 

Std. A:KOH 

concentration 
(% w/v) 

B: 

Temperature 
(°C) 

C:Pretreatment 

time 
(min) 

Reducing 

sugars 
(g/L) 

1 2 60 75 10.24 (9.93) 

2 10 60 75 18.06 (17.21) 
3 2 180 75 17.21 (18.06) 

4 10 180 75 38.26 (38.57) 

5 2 120 30 14.32 (13.12) 
6 10 120 30 23.47 (22.81) 

7 2 120 120 18.25 (18.91) 

8 10 120 120 35.82 (37.02) 
9 6 60 30 15.53 (17.04) 

10 6 180 30 24.32 (24.67) 

11 6 60 120 20.26 (19.91) 
12 6 180 120 43.29 (41.78) 

13 6 120 75 22.43 (22.17) 

14 6 120 75 22.12 (22.17) 
15 6 120 75 21.86 (22.17) 

16 6 120 75 22.43 (22.17) 

17 6 120 75 22.02 (22.17) 

* Values without brackets are actual values and values in the brackets are predicted 

values. 

*Std: Standard run order. *Values in ( ) represents model predicted values. 
 

It is important to evaluate model fitting to ensure that the model accurately 

represents the real-world application. Though, it is crucial to verify the model 
fitting approach, as the investigated and optimized response surface might not 

consistently produce precise findings. Generating an actual versus predicted values 

plot is essential for validating and interpreting the effectiveness of prediction 
models, especially when aiming to reduce sugar yield. This plot provides both 

visual and quantitative insights into the model's accuracy and highlights areas for 

potential improvement. It helps in understanding the model's effectiveness and 
identifying any mistakes in the predictions. Figure 1 shows the plot of predicted 

versus actual values for the yield of total reducing sugars. According to Figure 1, 

there is a strong association between the actual and predicted results for the 
reducing sugar yield (g/L) system, signifying that the second-order regression 

model is satisfactory. The fitted model's R2 value is 99%, indicating a high level of 

accuracy. 
 

 
Figure 1 Box–Behnken design plot for predicted versus actual values for reducing 

sugar yield 

 
Influence of independent factors and their interactions 

 

When using design expert software, one variable in the polynomial equation is held 
constant in order to generate response surfaces. This allows for the visualization of 

a three-dimensional image that illustrates how two independent factors are related 

to each other and the resulting response. Response surface graphs present useful 

observations into experimental domains, helping to optimize process parameters 

efficiently to achieve desired outcomes. 

The combination of a 6% KOH concentration, a temperature of 180 °C, and a 75-
min pretreatment time (Figure 2) is essential for maximizing the yield of reducing 

sugars in biomass hydrolysis. This combination influences the efficiency of 

converting biomass into fermentable sugars. The 6% KOH acts as a potent alkaline 
catalyst, breaking down composite polysaccharides, like hemicellulose and 

cellulose, into simpler reducing sugars. A temperature of 180 °C speeds up the 
hydrolysis process by increasing the reaction rates, promoting the breakdown of 

cellulose and hemicelluloses for maximum sugar yield. Higher temperatures 

ensure the disruption of hydrogen bonds and crystalline structures in cellulose, 
which is vital for effective hydrolysis (Wei et al., 2018). Research has showed that 

this combination can appreciably enhance the production of reducing sugars 

compared to lower temperatures or lower KOH concentrations. 
The combination of an optimal 6% KOH concentration, a pretreatment time of 120 

min, and a high temperature of 180 °C have a important impact on the yield of 

reducing sugars (Figure 3) in biomass hydrolysis processes. Increasing the 
pretreatment time at high temperature and optimal KOH concentration can greatly 

affect the amount of reducing sugars produced. Extending the pretreatment time to 

120 min allows for more thorough interaction between KOH and the biomass, 
potentially leading to improved hydrolysis. However, prolonged exposure to high 

temperature and alkaline conditions can lead to thermal and alkaline degradation 

of the produced sugars, which can lower the overall yield of reducing sugars. Study 
has revealed that while increasing the pretreatment time initially leads to higher 

yields of reducing sugars, beyond a certain point, further increases in time can 
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result in diminishing returns or even a decrease in yield due to sugar degradation 

(Fileto Perez et al., 2013). Extended pretreatment time at higher temperature can 

result in the formation of degradation by-products such as furfural and 

hydroxymethylfurfural (HMF), which can inhibit subsequent fermentation, 

processes (Alimny et al., 2019). 

 

 
 
Figure 2 Surface graph of reducing sugar yield showing interaction of KOH 

concentration and temperature  

 

 
 

Figure 3 Surface graph of reducing sugar yield showing interaction of KOH 

concentration and time 

 
 

 
 
Figure 4 Surface graph of reducing sugar yield showing interaction of temperature 

and time 
 

The effectiveness of the reducing sugar yield during biomass hydrolysis depends 

on the interaction of high temperature (180°C), extended pretreatment time (120 
min), and an optimal KOH concentration (6%), as shown in Figure 4. Elevated 

temperature help break down the cellulose's crystalline structure, making it more 

susceptible to chemical hydrolysis. Longer pretreatment times ensure thorough 
breakdown of the biomass, enhancing the reducing sugar yield. The combination 

of 6% KOH concentration, 180°C temperature, and 120 min pretreatment time 

maximizes the breakdown of hemicellulose and cellulose into reducing sugars. 
This combination significantly enhances the reducing sugar yield compared to 

lower temperatures or shorter pretreatment times under optimal conditions. 

However, extending the pretreatment time or increasing the temperature too much 
may lead to diminishing returns or reduced yield due to excessive sugar 

degradation. Studies shows that higher yields of reducing sugars are frequently 

acquired with high temperature in combination with optimal KOH concentration 
and extended pretreatment times (Lukajtis et al., 2018). Understanding the 

interaction among these factors is important for creating more effective designs 

and cost-effective biomass conversion processes. 
 

ANOVA for BBD 

 
The effect of a specific factor is defined as the change in response resulting from a 

change in the level of that factor. Two factors are considered to interact when their 

individual effects depend on each other's levels. To further assess the polynomial 
model (Equation 2) and take into account the interaction between factors, a 

statistical analysis of variance (ANOVA) was conducted by design expert 

statistical software. The statistical importance of the factors influencing the 
response (Y) of the process was determined by performing Fisher’s F-test 

(Sureiman and Mangera, 2020). 

 
Table 4 ANOVA of BBD of KOH pretreatment 

Source Sum of 

Squares 

df Mean 

Square 

F-value p-value  

Model 1186.02 9 131.78 88.54 < 0.0001 significant 

A-KOH concentration (% w/v) 386.28 1 386.28 259.52 < 0.0001 significant 

B-Temperature (°C) 434.98 1 434.98 292.24 < 0.0001 significant 

C-Pretreatment time (min) 199.80 1 199.80 134.24 < 0.0001 significant 

AB 43.76 1 43.76 29.40 0.0010 significant 

AC 17.72 1 17.72 11.91 0.0107 significant 
BC 50.69 1 50.69 34.06 0.0006 significant 

A² 17.82 1 17.82 11.97 0.0105 significant 

B² 2.88 1 2.88 1.94 0.2065 --- 
C² 34.21 1 34.21 22.98 0.0020 significant 

Residual 10.42 7 1.49    

Lack of Fit 10.16 3 3.39 52.87 0.0011 significant 

Pure Error 0.2563 4 0.0641    
Cor Total 1196.44 16     

Fit Statistics 

Std. Dev. 1.22 R² 0.9913 

Mean 22.93 Adjusted R² 0.9801 
C.V. % 5.32 Predicted R² 0.8638 

Press 163.0 Adeq Precision 34.0425 

 
The coefficient of determination, R², was calculated to assess the model's fit. R² 

measures the amount of variance that can be ascribed to natural variation. It is a 

summary metric used in regression studies to indicate how well the independent 
factor accounts for difference in the dependent factor. The R² shows how well the 

regression line fits the data by measuring the percentage of the overall variation in 

the dependent factor that is described by the independent factor (Romeo, 2020). In 
addition, R² quantifies the proportion of variability in the identified response 

variables that is clarified by the model, including the interactions between 

variables. The closer R² is to 1, the better the fit of the design. R² represents the 

percentage of total deviation in the dependent variable defined by the independent 
variable. An R² of 1.0 indicates a perfect fit to the linear model, while any value 

below 1.0 indicates that some variability in the data is not accounted for by the 

design (Hamilton et al., 2015). Table 4 shows that the response surface models 
developed in the current study for estimating reducing sugar production were 
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sufficient. P-values, or probability values, were employed as a measure to confirm 

the importance of the model. 

In addition, the ANOVA and a high R² value of 0.99 demonstrate the model's 

appropriateness and its alignment with the experimental data, explaining 99% of 

the differences in responses. This high R² value also validates the model's strong 

predictability, with a recommended minimum R² of 0.80 (Montgomery, 1991). 
ANOVA and the R2 were used to evaluate the model fit's appropriateness. Table 4 

presents the ANOVA results for both the linear and quadratic models proposed to 

elucidate the response of reducing sugar yield, emphasizing significant terms 
identified through variance analysis. ANOVA with 99% confidence and a p-value 

less than 0.05 (Montgomery, 1991) verified the quadratic model's predictive ability 
for reducing sugar yield. 

The model's F-value of 88.54 indicates high significance. The probability of 

obtaining such a high F-value from random variation is approximately 0.01%. 
Model terms A, B, C, AB, AC, BC, A², and C² are statistically significant with p-

values below 0.0500, while terms with values exceeding 0.1000 are considered not 

important. If many terms are found to be insignificant, simplifying the model could 
enhance its accuracy, excluding those necessary for model hierarchy. The lack of 

fit F-value of 52.87 suggests a significant lack of fit, with a probability of about 

0.11% that this arises from random noise. The Predicted R² of 0.8638 closely aligns 
with the Adjusted R² of 0.9801, with a difference of less than 0.2. The Adequacy 

Precision, measuring the signal-to-noise ratio, is satisfactory at 34.043, indicating 

a robust signal compared to noise. This model is suitable for effective exploration 
of the design space (Design Expert, 2023). 

 

Determination of optimal pretreatment conditions 
 

Based on the experimental result and the developed model, design expert software 

identified the ideal conditions for maximizing reducing sugar production from 
Napier grass using KOH pretreatment. As per Table 3, the criteria for three 

variables were aligned with achieving high reducing sugar yields. The model 

predicted that the highest reducing sugar yield would be achieved at 6% KOH 
concentration, 180°C temperature, and 120 min of pretreatment duration. The 

model demonstrated good accuracy in predicting reducing sugar yields across the 

investigated parameter ranges. 
 

Optimizations using the desirability function (DF) 

 

The study of polynomial equations demonstrates the roles of independent and 

dependent variables. Optimization is carried out using design expert software with 

the desirability function (DF), a recognized method for identifying optimal 
conditions. The DF transforms each response into a function, and then constructs 

a global function to achieve the desired responses. This process selects the ideal 

values for variables while taking into account their interactions (Roosta et al., 

2014). Through numerical optimization, optimal values for each input factor and 

the response variable can be determined. Input optimizations include specifying 

ranges, maximum values, minimum values, target values, or none (for responses), 

aiming to achieve an optimized output under specific conditions. In this study, 

input variables were assigned specific ranges, while the response aimed to 

maximize reducing sugar production. According to the model, reducing sugar 

might have a maximum output of 43.72 g/L  (Figure 5) at an initial KOH 

concentration of 6.79 %, temperature of 178.49°C, and time of 119.6 min. Under 

optimal conditions, the reducing sugar production from confirmatory studies was 
43.72 g/L, which was extremely near to the expected value 43.56 g/L, 

demonstrating the model's accuracy in predicting optimal process parameters and 

maximizing reducing sugar yield.  
 

 
 

Figure 5 Desirability ramp plot for optimization 

 

Optimization Analysis     

Researchers have utilized a range of optimization techniques to enhance product 

quality and productivity (Gutema et al., 2022; Patel and Brahmbatt, 2018). For 

estimate the desirability of responses, it is required to find the desirability function 
(DF) for each response. This includes factors like KOH concentration, temperature, 

and pretreatment time. Desirability is measured on a scale from 0 to 1, where zero 

indicates an undesirable outcome and one indicates a highly desirable outcome 
(Trautmann and Weihs, 2006). This scale helps to create a comprehensive 

function that is optimized by effectively selecting and adjusting the variables. 

Table 5 lists the criteria for optimizing all factors investigated based on the results. 
For every independent variable, the upper and lower bound values were determined 

using the BBD levels (Table 2).  The DF for different responses aims to maximize 

the reducing sugar yields within the observed values. The BBD optimization was 
done employing design expert software, resulting in 100 solutions, each with a 

desirability score of 1.000 (Table 6). Only 6 solutions were mentioned in the table.  

 

 

Table 5 Range of input parameters and response 

Name Goal Lower 
Limit 

Upper 
Limit 

Lower 
Weight 

Upper 
Weight 

Importance 

A:KOH concentration (% w/v) is in range 2 10 1 1 3 

B:Temperature (°C) is in range 60 180 1 1 3 

C:Pretreatment time (min) is in range 30 120 1 1 3 
Reducing sugars (%) maximize 10.24 43.29 1 1 3 

 

Table 6 Iterative determination of optimum conditions 

Number KOH concentration 
(% w/v) 

Temperature 
(°C) 

Pretreatment 
time 

(min) 

Reducing 
sugars 

(%) 

Desirability  

1 6.796 178.496 119.666 43.721 1.000 Selected 

2 7.196 177.622 119.508 44.596 1.000  

3 7.685 174.189 116.692 44.205 1.000  

4 8.333 175.000 110.750 44.086 1.000  
5 9.324 162.768 115.142 44.712 1.000  

6 9.751 179.793 109.638 47.926 1.000  

 
The Figure 6, bar graph in the present model illustrates the estimated geometric 

mean as the maximum overall desirability (D = 1.000) for the first solution (Table 

6) along with the individual desirability functions (di) for each response. The 
desirability function for the independent variables (KOH concentration, 

temperature, and time) was set to 1 because they fell within the optimization range. 

The desirability functions for KOH concentration, temperature, and time were all 
1.000. 

To obtain the optimal specific value for each response to solution number 1 (Table 

6), we used this desirability function and pre-selected a target for each factor. The 
results are shown in Figure 5. The optimal values for the independent variables to 

achieve a higher reducing sugar yield of 43.72 g/L were a KOH concentration of 

6.79 % w/v, temperature of 178.4 °C, and pretreatment time of 119.6 min. 
Additionally, Table 6 recommends 6 ideal options (out of 100 solutions) for 

achieving appropriate reducing sugar yield values. Experimental runs were 

conducted using the ideal conditions of solution 1 in duplicate to validate the 

model. The optimal parameters for reducing sugar production are presented in 
Table 7. 
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Figure 6 Bar graph for desirability  

 

Table 7 Optimum values during reducing sugar production 

S. No Name  Goal Optimum 

values 

1 A:KOH concentration (% w/v) is in range 6.79 

2 B:Temperature (°C) is in range 178.4 

3 C:Pretreatment time (min) is in range 119.6 
4 Reducing sugars (%) maximize 43.72 

5 Overall desirability   1.000 

 

Model validation    

 

The experiment was conducted twice under the ideal conditions outlined in Table 

8. The average sugar yield obtained was 43.29 g/L, which closely matches the 

predicted value of 43.20% from Table 8, with an error of 0.20%. When comparing 

the actual and predicted values, it was observed that they agreed fairly well, 
indicating the model's validity. The correlation between the actual and predicted 

data confirmed the model's accuracy in predicting reducing sugar yield from 

Napier grass. This approach reduces the number of experiments required and 
allows for the utilization of lower concentrations of KOH to achieve reliable 

results. 

 
Table 8 Model validation studies 

Trail KOH concentration 

(% w/v) 

Temperature 

(°C) 

Pretreatment time 

(min) 

Reducing sugars  

(g/L) 

Error 

(%) 
Actual Predicted 

1 6 180 120 43.29 43.20 0.20 

 

Ethanol production through SSF  

 

The findings of SSF are displayed in Figure 7. The ethanol yield was 60 % in the 

SSF of non-treated Napier grass using S. cerevisiae 3594, cellulase and xylanase 
mixture. Maximum ethanol yield was 72% in SSF of high KOH-pretreated Napier 

grass using S. cerevisiae 3594, cellulase, and xylanase for 4 days. Ethanol yield 

increased consistently for both substrates, peaking at 4 days of fermentation. After 
this point, a gradual decline in ethanol yield was observed for both substrates. This 

decrease is attributed to depletion of nutrients which are essential for yeast growth 

and the inhibitory effects of byproducts from pretreatment process, higher sugars, 

ethanol and presence of salts in the fermentation medium (Taherzadeh and 

Karimi, 2011). The conditions mentioned above could potentially affect the yeast's 

fermentative ability. 
 

 
Figure 7 Ethanol fermentation by S. cerevisiae on high and low KOH pretreated 

Napier grass 

 

Comparative studies on sugar production 

 

In current study, the yield of reducing sugar is 43.29 g/L (Table 9), compared to 
other research listed in the literature. Remli et al. (2014) found that the highest 

quantity of sugars released at 120 °C after pretreating rice straw with 2% KOH was 

59.90 g/L. In contrast, the minimum sugar release was 37.00 g/L in the sample 
pretreated with 2% KOH at 30 °C. The findings indicate that a high concentration 

of KOH is necessary to release increased amounts of sugars from the substrate. 

According to Li et al. (2012), the maximum glucose sugar release of 49.91 ± 0.18 
g/L was achieved when the bamboo substrate was pretreated with 12% KOH for 1 

h. The findings specify that the substrate pretreated with microwave-assisted KOH 

had a significantly higher sugar yield compared to the untreated samples. A recent 
study by Anuradha et al. (2022) reported that the highest yield of reducing sugars, 

1.906 ± 0.2 g/L, was achieved when the rice husk substrate was pretreated with 4% 

NaOH for 6 h. This study demonstrates that 4% NaOH pretreatment effectively 
disintegrates rice husk biomass, resulting in high sugar recovery. According to a 

study by Tanangteerapong et al. (2017), the pretreatment of Napier grass with 

hydrochloric acid produced the greatest quantity of reducing sugar: 44.24 g/L at 

90 min. This yield was somewhat higher than that achieved with sulfuric acid, 
which was 41.83 g/L at 150 min. Pensri et al. (2016) conducted a study on the 

possibility of converting NPG residue into fermentable sugar. They treated the 

substrate with different concentrations of sodium hydroxide (NaOH) and then used 
enzymatic hydrolysis for saccharification. At 10% (w/v) total solids and with an 

enzyme loading volume of 2.0 ml/g of substrate, they achieved glucose and 

reducing sugar generation of 43 g/L and 64 g/L, respectively, from the NPG 
residue. The study's sugar yield of 43.29 g/L closely aligns with the results of Li 

et al. (2012), Pensri et al. (2016), and Tanangteerapong et al. (2017), suggesting 

that the alkali treatment effectively improved the yield. The usage of higher 

temperatures and a longer pretreatment duration are involved in the high sugar 

production. By utilizing RSM, the study successfully optimized the process factors 

and determined the individual, cumulative, and combined effects on the response 
variable in the pretreatment method (Veza et al., 2023). The RSM approach helped 

identify the best conditions for pretreating Napier grass to increase reducing sugar 

production and improve ethanol yield. 
 

Table 9 Comparative table on reducing sugar production 

Biomass 

substrate 

Pretreatment 

conditions 

Reducing 

sugar 

yield(g/L) 

References 

Rice straw 2% KOH, 120 °C 59.90 Remli et al. (2014) 

Bamboo 
substrate 

12% KOH for 1 h 49.91 Li et al. (2012) 

Rice husk  4% NaOH for 6 h 1.906 
Anuradha et al. 

(2023) 

Napier grass HCl, 90 min 44.24 
Tanangteerapong et 

al. (2017) 

NPG residue 
3 % NaOH,  120 

°C for 1 h 
43.00 Pensri et al. (2016) 

Napier grass 
8% KOH, 60 min, 

180 °C 
43.26 Present study 

 

CONCLUSION  

 
The study examined untreated Napier grass and found that it consisted of 

86.04±1.20% moisture, 28.50±0.12% hemicellulose, 34.15±0.08% cellulose, 

26.41±0.04% lignin, and 13.22±0.16% ash. These values may vary depending on 
factors such as the age at which the grass is harvested, nutritional inputs, and 

location. The high hemicellulose and cellulose content, coupled with low ash and 

lignin content, make Napier grass a promising material for bioethanol production. 
The study optimized the pretreatment parameters using a BBD of RSM to enhance 

sugar production. The highest yield of 43.29 g/L was achieved at a 6% KOH 

concentration, 180°C temperature, and 120 min pretreatment time. The quadratic 
regression model showed a high R² value of 99%, signifying strong predictability. 

The ANOVA confirmed the model's statistical significance, with a high F-value 

and significant p-values. The coefficient of determination (R²) was 0.99, indicating 
the model's fitness. The optimal conditions predicted a yield of 43.72 g/L at 6.79 

% KOH, 178.49 °C, and 119.6 min, and experimental validation actual value 

closely matched this at 43.29 g/L. The desirability function scored the ideal 
conditions at 1.000. Using high KOH-pretreated Napier grass, the highest ethanol 

yield produced by SSF was 72%. In conclusion, optimizing pretreatment 
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conditions using a BBD and RSM improves the yield of reducing sugar from 

Napier grass, making it a viable bioethanol feedstock. The model's accuracy and 

validation underline the potential for efficient and cost-effective conversion of 

biomass. 
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