TAXONOMY AND SPECIES COMPOSITION OF EPIPHYTIC ALGAE IN STA. CRUZ RIVER, LAGUNA (PHILIPPINES)

Eldrin DLR. Arguelles*1, Rosario G. Monsalud1

Address(es):
1 Philippine National Collection of Microorganisms, National Institute of Molecular Biology and Biotechnology (BIOTECH), University of the Philippine Los Baños, College, Laguna, Philippines, 4031.

*Corresponding author: edarguelles@up.edu.ph

ARTICLE INFO

Received 15. 8. 2019
Revised 7. 8. 2021
Accepted 12. 8. 2021
Published 1. 12. 2021

INTRODUCTION

Macrophytes are aquatic and amphibious plants found in the littoral zones of running waters (e.g. rivers, streams, and the like) and shallow lakes contributing largely to the autotrophic carbon pool and oxygen budget of the aquatic ecosystem (Janauer & Dokulil, 2006). These plants have a significant function in water biocenoses, hydrology and sediment dynamics, biochemical cycles, structuring and altering the physico-chemical features (of an aquatic ecosystem) by photosynthesis, mineralization, and decomposition (Jeppesen et al., 2002; Joniak et al., 2007; Špoljar et al., 2012). Macrophytes have diverse species of microalgae attached to submerged plant parts which have been shown to be an important productive component of the aquatic ecosystem (Sheldon & Boyle, 1975). Algal epiphytes form a matrix system of microalgae and cyanobacteria attached to submerged aquatic macrophytes. These algae are regarded as primary species in different lotic water systems and are involved in maintaining ecological balance among the different groups of macrophytes and aquatic organisms (Hassan, et al., 2014; Fawzy, 2016). It is widely recognized that these organisms supply food to invertebrates, fish, and in other aquatic fauna in the littoral zone and contributes an estimated of 0.2% to 41% of the total primary production in an aquatic ecosystem (Laugaste & Kuumanen, 2005;Effiong & Inyang, 2015). Several observational and experimental studies on ecological status of bodies of water showed an increase in the population and diversity of algal epiphytes in response to nutrient loading and pollution (Gill et al., 2006; Peterson et al., 2007; Fawzy, 2016). This led to the consideration of these organisms as excellent bioindicators of environmental and water quality alterations because of its sensitivity to external sources of pollution (Lowe, 1996; Fawzy, 2016). Species of algal epiphytes associated with organically polluted enriched waters include Euglena, Phacus, Nitzschia, Chlorella, Scenedesmus, Chlamydomonas, Cladophora, and Closterium (Effiong & Inyang, 2015).

The biological interconnection and relationship between algal epiphytes and host aquatic macrophyte in the aquatic environment are still limited and incompletely studied (Wetzel, 1996). Several reports suggested that biotic and abiotic factors such as physico-chemical characteristics of submerged parts (stem, leaves and roots) of macrophytes, availability of substrates, temperature, light intensity and grazing affects the diversity and prevalence of epiphytic algal community (Gill et al., 2006; Fawzy, 2016). Aquatic macrophytes are sometimes detrimental for algal epiphytes since they are capable of monopolizing light and assimilate nutrients within the vertical expanse of the water column, inhibiting algal epiphytes as well as other submerged macrophytes from acquiring enough resources for growth and survival (Schramm & Jirka, 1989). Moreover, morphology of several macrophyte species, specifically the length of stem and leaves, may limit the growth and proliferation of algal epiphytes by releasing inhibitory substances (allelochemicals) (Tunca et al., 2014). Thus, development of algal epiphyton community as well as its distribution and abundance depend largely on macrophyte host species. On the other hand, in situations where there is an evident increased in algal epiphyte population, it is observed that there is a reduction in the total macrophyte biomass density due to restriction in nutrient diffusion from the water to host plant (Fawzy, 2016). In the Philippines, taxonomic studies of algal epiphytes associated to different macrophytes were done only to those plant species inhabiting Laguna de Bay (Rañola et al., 1999; Arguelles, 2019 a,b;c; Arguelles, 2020a). To date, a total of 82 taxa of algal epiphytes associated with four dominant aquatic macrophytes (Hydrilla verticillata, Nymphaea pubescens, Eichhornia crassipes and Ipomoea aquatica) found in Laguna de Bay were documented in the Philippines. These taxonomic surveys reported the occurrence of five rare microalgae – namely, Cryptogloea skujae Marin and Melkonian, Pseudanaubarea minima (G.S. An) Anagnostid, Synechococcus nidulans (Pringsheim) Komárek, Chroococcus schizodermaeus West and Francceia amphihricha (Lagerheim) Hegewald – for the first time in the Philippines. Also, some of the microalgal genera documented in these taxonomic studies (e.g. Cryptogloea, Tetradesmus, Nitzschia, Euglena, Chroococcus, Oscillatoria, Phacus and Chlorella) are usually associated with organically polluted enriched waters (Arguelles, 2019 a,b;c; Arguelles, 2020a). These algae are regarded as good indicators of environmental changes and water quality due to their sensitivity to external sources of fertilization which can be use in the assessment of ecological status of Laguna de Bay (Arguelles, 2020a). The taxonomic records reported in these studies provided baseline information regarding distribution and diversity of Philippine epiphytic algae from aquatic macrophytes found in local freshwater habitat. Diversity and ecological studies of epiphytic microalgae of different aquatic macrophytes found in running waters (such as rivers and streams) in the Philippines remain poorly understood. To date, no documented taxonomic survey was conducted on these group of macroalgae. Thus, additional taxonomic survey of algal epiphytes of different aquatic macrophytes found in these aquatic ecosystems are needed to deepen our understanding of the diversity and
ecological roles of these microorganisms. The goal of this investigation is to account the species diversity of algal epiphytes associated to different aquatic macrophytes observed in Sta. Cruz River, one of the 21 major tributary rivers of Laguna de Bay. Also, morphotaxonomic description of each algal taxa were documented together with a brief description of the sampling sites and natural environment of its existence.

MATERIAL AND METHODS

Study Site

Sta. Cruz River is considered as one of the main branch rivers of Laguna de Bay. It lies at 14.3001° N and 121.4068° E, specifically within the municipalities of Liliw, Magdalena, Nagcarlan, Pagasaan, Pila, and Sta. Cruz (Figure 1). The river is measured to be approximately 14.48 km in length, flowing towards Laguna de Bay. Currently, the principal use of this river is for fishery and agriculture (with coconut and rice production, livestock, poultry, and piggery raising as main activities). This body of water is known to be a receptacle for floodwaters coming from its small tributary rivers such as Maimpis river, Liliw river, San Diego river, Tipacan river, and Talabang river (Madamba et al., 1992).

Sampling and Specimen Preparation of Epiphytic Algae

A single preliminary collection of algal epiphytes from submerged aquatic macrophytes was done from the littoral zone of Sta. Cruz River. The plant parts were put into sterile autoclavable plastics filled with water for laboratory examination. A total of 20 aquatic macrophyte samples (each for Pistia stratiotes, Eichhornia crassipes and Ipomea aquatica) were collected and analyzed throughout the study period. Immediately after collection, these samples were washed several times with sterile distilled water. The algal epiphytes from submerged leaves, stems and roots on the collected aquatic macrophytes were set apart from the plant by gently scraping the attached algae on the plant material (Zimba & Hopson, 1997; Arguelles, 2021a,b,c). The collected scraped algal epiphyte was carefully mixed, and a portion of 50 mL was kept for taxonomic enumeration. The mixed algal epiphyte sample was transferred into a sterile beaker and left overnight to allow settling of the scraped algal samples. An aliquot of 45 mL of the liquid specimen was removed in the beaker after the settling period. The residual 5 mL of the collected scraped material was transferred into a sterile dumb vial for taxonomic enumeration of algal epiphytes and were preserved using 2-3 drops of Lugol’s iodine from the prepared specimens (Utermohl, 1958; Arguelles et al., 2014; Tunca et al., 2014; Arguelles, 2019a,b,c; Arguelles, 2020b; Arguelles, 2021a,b,c). A small portion (5 mL) of the concentrated scraped epiphytic algal samples was used for the analysis of diatom flora. The scraped samples were chemically digested following the standard procedure for diatom cleaning and slide preparation of Round et al., 1990). Mixture of cleaned diatoms were dried onto glass coverslips and mounted. Three slides were prepared for each aquatic macrophytes sample for microscopic observation and enumeration of diatoms.

RESULTS AND DISCUSSION

Epiphytic algal flora of three dominant aquatic macrophyte (P. stratiotes, E. crassipes and I. aquatica) observed in Sta. Cruz River consisted of 22 taxa. Of these, 8 belong to the Chlorophyta, 4 to the Cyanobacteria, 7 to the Bacillariophyta, and 3 to the Euglenophyta divisions. Chlorophyta was dominant and comprised 36.36% of all recorded taxa. Bacillariophyta, Cyanobacteria and Euglenophyta represented 31.81%, 18.18% and 13.63% of all recorded taxa, respectively. The taxonomic list of the algal epiphytes determined in Sta. Cruz River is given in Table 1. All the taxa are systematically enumerated with morphotaxonomic descriptions along with a simple habitat information where the alga was observed. Illustrative photomicrographs of some of the algal species are given in Plates I-IV. Currently accepted algal taxonomic names were used based on the recent nomenclatural indices for algae of the International Association of Plant Taxonomy (IAPT) and Round et al. (1990).

Dichotomous Key

1. Cells without membrane-bound organelles ... 2
 1. Cells with membrane-bound organelles ... 5
2. unicellular and spherical occurring as singly or in clusters of 2 to 4 cells ….. Chroococcus minutus
2. Filamentous occurring as single or in groups of trichomes …………………….. 3
3. Filamentous cyanobacteria exhibiting true branching Hapalosiphon welwitschii
3. Filamentous cyanobacteria not exhibiting true branching …………………….. 4
4. Trichomes are straight and 5.0–7.0 μm wide …………………. Oscillatoria tenuis
4. Trichomes are straight, cylindrical and 6.0–8.5 μm wide Planktothrix compressa
5. Cells with siliceous cell wall……………………………………………………. 6
5. Cells without siliceous cell wall………………………………………………… 7
6. Cells radial in nature ……………………………………………………………….. 7
6. Cells bilateral in nature…………………………………………………………… 8
7. Cells grow in linear colonies joined by spines. Aulacoseira granulata
7. Cells are not capable of forming linear colonies and without linking spines …… Cyclotella meneghiana
8. Cells with sigmoid shape in appearance ………………………………………. Gyrosigma acuminatum
8. Cells not sigmoid shape in appearance …………………………………………. 9
9. Cells without raphe system (araphid) …………………………………………. 10
9. Cells with raphe system…………………………………………………………. 10
10. Valves linear not inflated in the median part …………………………………. Nitzschia palea
10. Valves linear-elliptical and inflated in median part ……………………………. 11
11. Valves with linear-arched central area ………………………………………. Cymbella affinis
11. Valves are linear-elliptical and inflated in median part ……………… Rhopalodia gibba
12. Cells with red eyespot and proteinaceous pellicle …………………………. 13
12. Cells without red eyespot and proteinaceous pellicle ………………………. 15
13. Protoplast without a rigid lorica ………………………………………………. 14
13. Protoplast with a rigid lorica …………………………………………………… 14
14. Cells flattened ……………………………………………………… Phacus longicaudus
14. Cells broadly ellipsoid ………………………………………………………… 16
15. Cells with stellate chloroplasts …………………………………………………. Staurastrum gracile
15. Cells without stellate chloroplasts …………………………………………….. 16
16. Unicellular, solitary or in clump…………………………………………………. 19
16. Colonial with several cells attached………………………………………….. 17
17. Cells are crescent shaped …………………………………………………….. 18
17. Cells not crescent shaped………………………………………………………. 20
18. Crescent-shaped cells and needle-like in appearance Ankistrodesmus falcatus
18. Crescent-shaped cells and lunate in appearance ……………………… Kirchneriella lanuirs
19. Cells spherical (10–13 μm in diameter) ……………………………………. Chlorococcus infusionum
19. Cells spherical or ellipsoidal (2.5 μm in diameter) ………………………… Chlorella vulgaris
20. Coenobia with spiny projections (terminal cells) ……….. Scenedesmus quadricauda
20. Coenobia without spiny projections (terminal cells) ……………………. 21
21. Coenobia is composed of 16 cells (100–110 μm in diameter) Lacuslaterigracillimum
21. Coenobia is composed of 4–6 cells (10.0–15.0 μm in diameter) Westella botryoides

Figure 1 Location map of Sta. Cruz River and its vicinitics.

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cells without membrane-bound organelles</td>
</tr>
<tr>
<td>2</td>
<td>Cells with membrane-bound organelles</td>
</tr>
<tr>
<td>3</td>
<td>Unicellular and spherical occurring as singly or in clusters of 2 to 4 cells</td>
</tr>
<tr>
<td>4</td>
<td>Chroococcus minutus</td>
</tr>
<tr>
<td>5</td>
<td>Filamentous occurring as single or in groups of trichomes</td>
</tr>
<tr>
<td>6</td>
<td>Cyclotella meneghiana</td>
</tr>
<tr>
<td>7</td>
<td>Oscillatoria tenuis</td>
</tr>
<tr>
<td>8</td>
<td>Planktothrix compressa</td>
</tr>
<tr>
<td>9</td>
<td>Gyrosigma acuminatum</td>
</tr>
<tr>
<td>10</td>
<td>Nitzschia palea</td>
</tr>
<tr>
<td>11</td>
<td>Cymbella affinis</td>
</tr>
<tr>
<td>12</td>
<td>Rhopalodia gibba</td>
</tr>
<tr>
<td>13</td>
<td>Scenedesmus quadricauda</td>
</tr>
<tr>
<td>14</td>
<td>Phacus longicaudus</td>
</tr>
<tr>
<td>15</td>
<td>Staurastrum gracile</td>
</tr>
<tr>
<td>16</td>
<td>Chlorella vulgaris</td>
</tr>
<tr>
<td>17</td>
<td>Kirchneriella lanuirs</td>
</tr>
<tr>
<td>18</td>
<td>Lacuslaterigracillimum</td>
</tr>
<tr>
<td>19</td>
<td>Westella botryoides</td>
</tr>
</tbody>
</table>
Table 1 Distribution of epiphytic algae on dominant aquatic macrophytes from Sta. Cruz River (Laguna, Philippines).

<table>
<thead>
<tr>
<th>Algal Species</th>
<th>Dominant Aquatic Macrophytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyanobacteria</td>
<td>Water Lettuce (Pistia stratiotes) Water Hyacinth (Eichhornia crassipes) Water Spinach (Ipomoea aquatica)</td>
</tr>
<tr>
<td>Chroococcus minutus (Kützing) Nägeli</td>
<td>+</td>
</tr>
<tr>
<td>Order: Oscillatoriales Family: Oscillatoriaceae</td>
<td></td>
</tr>
<tr>
<td>Oscillatoria tenuis C. Agardh ex Gomont</td>
<td>+</td>
</tr>
<tr>
<td>Family: Microcoleaceae</td>
<td></td>
</tr>
<tr>
<td>Planktothrix compressa (Utermöhl) Anagnostidis et Komárek</td>
<td>+</td>
</tr>
<tr>
<td>Order: Nostocales Family: Hapalosiphonaceae</td>
<td></td>
</tr>
<tr>
<td>Hapalosiphon welwitschii West & G.S.West</td>
<td>+</td>
</tr>
<tr>
<td>Chlorophyta</td>
<td>Water Lettuce (Pistia stratiotes) Water Hyacinth (Eichhornia crassipes) Water Spinach (Ipomoea aquatica)</td>
</tr>
<tr>
<td>Chlorella vulgaris Beyerinck [Beijerinck]</td>
<td>+</td>
</tr>
<tr>
<td>Family: Chlorococcales</td>
<td></td>
</tr>
<tr>
<td>Chlorococcus infusionum (Schrank) Meneghini</td>
<td>+</td>
</tr>
<tr>
<td>Family: Hydrodictyaceae</td>
<td></td>
</tr>
<tr>
<td>Lacunastrium gracilimum (West & G.S. West) H. McManus</td>
<td>+</td>
</tr>
<tr>
<td>Class: Chlorophyceae Order: Sphaeropleales Family: Scenedesmaceae</td>
<td></td>
</tr>
<tr>
<td>Scenedesmus quadricauda (Turpin) Brébisson</td>
<td>+</td>
</tr>
<tr>
<td>Westella botryoides (West) De Wildeman</td>
<td>+</td>
</tr>
<tr>
<td>Order: Sphaeropleales Family: Selenastraceae</td>
<td></td>
</tr>
<tr>
<td>Kirchneriella lunaris (Kirchner) Möbius</td>
<td>+</td>
</tr>
<tr>
<td>Ankistrodesmus falcatus Corda (Ralfs)</td>
<td>+</td>
</tr>
<tr>
<td>Family: Desmidiales</td>
<td></td>
</tr>
<tr>
<td>Staurastrum gracile Ralfs ex Ralfs</td>
<td>+</td>
</tr>
<tr>
<td>Bacillariophyta</td>
<td>Water Lettuce (Pistia stratiotes) Water Hyacinth (Eichhornia crassipes) Water Spinach (Ipomoea aquatica)</td>
</tr>
<tr>
<td>Nitzschia palea (Kützing) W. Smith</td>
<td>+</td>
</tr>
<tr>
<td>Order: Naviculales Family: Naviculaceae</td>
<td></td>
</tr>
<tr>
<td>Gyrosigma acuminatum (Kützing) Rabenhorst</td>
<td>+</td>
</tr>
<tr>
<td>Order: Cymbellales Family:Cymbellaceae</td>
<td></td>
</tr>
<tr>
<td>Cymbella affinis Kützing</td>
<td>+</td>
</tr>
<tr>
<td>Order: Rhopalodiales Family: Rhopalodiaceae</td>
<td></td>
</tr>
<tr>
<td>Rhopalodia gibba (Ehrenberg) O. Müller</td>
<td>+</td>
</tr>
<tr>
<td>Order: Licmophorales Family: Ulnariaceae</td>
<td></td>
</tr>
<tr>
<td>Ulvaria ulna (Nitzsch) Compère</td>
<td>+</td>
</tr>
<tr>
<td>Class: Mediophyceae Order: Stephanodiscaceae Family: Stephanodiscaceae</td>
<td></td>
</tr>
<tr>
<td>Cyclotella meneghiniana Kützing</td>
<td>+</td>
</tr>
<tr>
<td>Class: Coscinodiscophyceae Order: Aulacoseiraceae Family: Aulacoseiraceae</td>
<td></td>
</tr>
<tr>
<td>Aulacoseira granulata (Ehrenberg) Simonsen</td>
<td>+</td>
</tr>
<tr>
<td>Euglenophyta</td>
<td>Water Lettuce (Pistia stratiotes) Water Hyacinth (Eichhornia crassipes) Water Spinach (Ipomoea aquatica)</td>
</tr>
<tr>
<td>Phacus longicauda (Ehrenberg) Dujardin</td>
<td>+</td>
</tr>
<tr>
<td>Order: Euglenales Family: Phacaceae</td>
<td></td>
</tr>
<tr>
<td>Lepocinclis acus (O.F. Müller) B. Marin and Melkonian</td>
<td>+</td>
</tr>
<tr>
<td>Family: Euglenaceae Genus: Trachelomonas Ehrenberg</td>
<td></td>
</tr>
<tr>
<td>Trachelomonas armata (Ehrenberg) F. Stein</td>
<td>+</td>
</tr>
</tbody>
</table>

* = Present
Taxonomic Enumeration of Algal Epiphytes

Cyanobacteria
Class: Cyanophyceae
Order: Chroococcales
Family: Chroococcaceae
Genus: Chroococcus Nägeli
1. Chroococcus minutus (Kützing) Nägeli
 BASIONYM: Protococcus minutus Kützing
 Cells spherical or irregularly spherical usually occurring as single or in cluster of 2–4 cells; bluish green to light green in color; colonies enclosed in an amorphous, colorless, homogenous mucilage diffusible at the margin; 5.0–7.0 μm in diameter with sheath and 3.0–5.0 μm in diameter without sheath; protoplast is smooth or slightly granulated.
 Found existing as a bluish green or light green layer associated on stems and roots of water lettuce and water hyacinth together with other green microalgae and filamentous cyanobacteria.

Class: Cyanophyceae
Order: Oscillatoriaceae
Genus: Oscillatoria Vaucher ex Gomont
1. Oscillatoria tenuis C. Agardh ex Gomont
 Trichomes usually are scattered and straight (5.0–7.0 μm broad); crosswalls are constricted; terminal cells not attenuated (usually rounded) and lacks calyptra; specialized cells (eg. akinetes and heterocytes) are not present; cells are bluish green in color, 1.0–3.0 μm long and 4.0–5.0 μm wide, granulated protoplasm; terminal cell hemispherical to rounded.
 Found existing as greenish to bluish-green layer on leaves and stem of water lettuce and water hyacinth submerged slightly in water together with several filamentous cyanobacteria.

Class: Cyanophyceae
Order: Oscillatoriaceae
Family: Microcoleaceae
Genus: Plankothrix K. Anagnostidis & J. Komárek
1. Plankothrix compressa (Utermöhl) Anagnostidis et Komárek
 Filaments occurring as planktonic, solitary and without mucilaginous sheaths; trichomes are cylindrical (6.0–7.5 μm wide), dark blue green to brownish in color, cross-walls are slightly constricted and attenuated towards the ends without false branching. Cells are shorter than wide and with few aerotopes. Apical cells widely rounded and not capitlated. Specialized cell such as heterocytes and akinetes are absent.
 A new record for the Philippines.
 Found existing as a bluish-green layer on leaves of water lettuce submerged in water together with several filamentous green algae and cyanobacteria.

Class: Cyanophyceae
Order: Nostocales
Family: Hapalosiphonaceae
Genus: Hapalosiphon Nägeli ex É. Bornet & C. Flahault
1. Hapalosiphon welwitschii West & G.S. West
 Cells are elongate and sub-spherical; dark green to bluish green in color, 1.0–2.0 μm in length and 2.0–3.0 μm in width, characterized with protoplasm that are smooth, septa of each cell is granulated; terminal end cells usually rounded; trichomes are arranged in one series exhibiting true branches along the filament, anterior end cell is not capitlated and attenuated; gelatious sheaths are colorless and thin; and lateral branches are usually shorter than the main filament.
 Found existing as a greenish to blue green layer on stem and leaves of water spinach submerged in water together with other green algae and cyanobacteria.

Bacillariophyta
Class: Bacillariophyceae
Order: Bacillariariae
Family: Bacillariaceae
Genus: Nitzschia Hassall
1. Nitzschia palea (Kützing) W. Smith
 BASIONYM: Synedra palea Kützing
 Valves are linear lanceolate tapering rapidly at the terminal poles with protracted round to capitulate apices. Fibulae with central nodule are discrete and with striae that are slightly visible (18.0–24.0 striae in 10.0 μm). Valve mantle wider on keel side; 25.0–45.0 μm (length) and 4.0–8.0 μm (width), costae is 9.0–15.0 μm.
 Found existing as a brownish layer on submerged roots and leaves of water hyacinth and water spinach together with other filamentous fungi and diatoms.

Class: Bacillariophyceae
Order: Naviculales
Family: Pleurosigmataceae
Genus: Gyrosigma Hassall
1. Gyrosigma acuminatum (Kützing) Rabenhorst
 BASIONYM: Frustulia acuminata Kützing
 Valves are slender and sigmoid in shape with terminal ends that are rounded. The raphe is central and follows an S-shaped appearance. Cells are large 65.0–147.0 μm in length and 11.0–20.0 μm in width. Middle area of the cell is oval, not rotated. The cells have two chloroplasts plate-like in appearance. Striae on the valve surface are both parallel and transverse to the raphe.
 Found existing as a brownish layer on leaves and stem of water hyacinth and water spinach submerged in water together with cyanobacteria and green algae.

Class: Bacillariophyceae
Order: Cymbellales
Family: Cymbellaceae
Genus: Cymbella C. Agardh
1. Cymbella affinis Kützing
 BASIONYM: Cymbella affinis Kützing
 Cells are solitary and naviculoid; cell length is 21.5–28.0 μm and breadth of 6.0–8.0 μm. Valves are lanceolate with protracted to slightly subrotstrate or subcapitate terminal ends. Cells have narrow axial area and central area that is linear-arched, and indistinct; striae are 8–11 for every 10 μm.
 Found existing as a brownish layer on leaves and stem of water spinach submerged in water together with filamentous fungi and cyanobacteria.

Class: Bacillariophyceae
Order: Rhopalodiales
Family: Rhopalodiaceae
Genus: Rhopalodia O. Müller
1. Rhopalodia gibba (Ehrenberg) O. Müller
 BASIONYM: Navicula gibba Ehrenberg
 Frustules with swollen middle and are bracket in shape (valve view), apices are sharply bent with convex margin; in girdle view, valves linear-elliptical, inflated in median part with rounded poles; valves 45.5–53.5 μm long and 11.5–15.0 μm broad; ventral margin are usually straight and curve at the ends while the dorsal margin is convex; striae slightly radiate to parallel; striae 14–16 in 10 μm.
 Found existing as a brownish layer on stem and leaves of water hyacinth submerged in water together with several filamentous cyanobacteria and green microalgae.

Class: Bacillariophyceae
Order: Licmophorales
Family: Ulnariaceae
Genus: Ulnaria (Kützing) Compère
1. Ulnaria ulna (Nitzsch) Compère Pl. II, Fig. 3
BASIONYM: Bacillaria ulna Nitzsch
Valves are linear-lanceolate to linear with blunt rostrate to sub-rostrate terminal ends. Cell length is usually 91.0-192.0 µm and width of 4.5-8.5 µm. Central area is characterized by having roughly square outline (sometimes circular or elliptical outline) extending to the margin of the valves. Ghost striae are noticeable within the central area of the cell. Striae are parallel and usually 7-9 for every 10 µm.

Found existing as a brownish layer on stems and leaves of water lettuce submerged in water together with other unicellular and filamentous fungi as well as cyanobacteria.

Class: Coccodiscophyceae
Order: Aulacoseirales
Class: Chlamydomonadales
Genus: Aulacoseira Thwaites
1. Aulacoseira granulata (Ehrenberg) Simonsen Pl. II, Fig. 4
BASIONYM: Gaullonella granulata Ehrenberg
Frustules are cylindrical, joined together forming filamentous type of colonies. Valves are 5.0-17.0 µm in diameter, with height of the mantle of 4.0-21.0 µm. The ratio of the height of the mantle to diameter of the valve is greater than 0.9 and lower than 2.0. The mantle is characterized by having sides that are straight and valve face that is flat. Linking spines are triangular and short and located at the end of each pervalvar costa.

Found existing as a brownish layer on leaves of water spinach submerged in water together with other green microalgae and filamentous cyanobacteria.

Class: Chlorellophyceae
Order: Thalassiosirales
Family: Stephanodiscaceae
Genus: Cyclotella (Kützing) Brébisson
1. Cyclotella meneghiniana Kützing Pl. II, Fig. 5
BASIONYM: Rhapdotus convolutus var. lunare Kirchner
Kirchneriella lunaris SchmidLe
Thallus is microscopic and colonial (cells are seldom solitary); clusters of 2-4 up to 64 crescent-shaped cells within a mucilaginous sheath. Cells are lunate, cylindrical, or sickle-shaped, 3.0-4.0 × 2.0-8.0 µm (length × width). Cells with single parietal chloroplast adjacent at the margin of the cell with 1-4 pyrenoids per cell.

Found existing as a light greenish layer on stems of water spinach and water lettuce submerged in water together with other filamentous cyanobacteria.

Class: Chlorophyta
Order: Chlorellales
Family: Selenatozoonaceae
Genus: Kirchneriella SchmidLe
1. Kirchneriella lunaris (Kirchner) Möbius Pl. II, Fig. 6
BASIONYM: Rhapdotus convolutus var. lunare Kirchner
Kirchneriella lunata Kirchner
Thallus is microscopic and colonial (cells are seldom solitary); clusters of 2-4 up to 64 crescent-shaped cells within a mucilaginous sheath. Cells are lunate, cylindrical, or sickle-shaped, 3.0-4.0 × 2.0-8.0 µm (length × width). Cells with single parietal chloroplast adjacent at the margin of the cell with 1-4 pyrenoids per cell.

Found existing as a light greenish layer on stems and leaves of water hyacinth and water lettuce submerged in water together with other filamentous cyanobacteria.

Class: Chlorophyta
Order: Sphaeropleales
Family: Selenatozoonaceae
Genus: Ankistrodesmus Corda
1. Ankistrodesmus falcatus Corda (Ralfs) Pl. III, Fig. 1
BASIONYM: Microstaurias falcatus Corda
Cells are solitary or sometimes in clustered bundles or in tufts or mixed with other microscopic algae, lacking a mucilage envelope; cells are crescent-shaped and needle-like in appearance; 21.0-33.0 µm in length and 2.0-4.0 µm in width; narrowly tapering toward the anterior and posterior end, sometimes straight but majority of the times occurring as curved rods; parietal chloroplast with pyrenoid.

Found existing as a dark greenish layer on stem and leaves of water lettuce and water hyacinth submerged in water together with filamentous fungi and cyanobacteria.

Class: Chlorophyta
Order: Chocolococceae
Genus: Chlorococum Meneghini
1. Chlorococum infusionum (Schrank) Meneghini Pl. III, Fig. 5
SYNONYM: Chlorococum humicola (Nägeli) Rabenhorst 1868
BASIONYM: Cystococcus humicola Nägeli
Spherical cells with a diameter of 10.0-13.0 µm, solitary but sometimes several cells form a cluster of greenish cells, parietal chloroplasts with a single pyrenoid covering the cells.
Phytoalgal taxa from Pistia stratiotes, Eichhornia crassipes (Santulli et al., 2019 a, b) on recent algal taxonomic nomenclature and this is similar to the taxa reported on the current investigation.

In the Philippines, little is known on the distribution, taxonomy and diversity of cyanobacteria and microalgae associated with aquatic macrophytes found in marine and freshwater ecosystems. A total of 22 epiphytic algal taxa from three dominant aquatic macrophytes (Pistia stratiotes, Eichhornia crassipes and Ipomoea aquatica) found in Sta. Cruz River were observed in the study. The taxonomic list present 8 taxa belonging to the Chlorophyta, 4 to the Cyanobacteria, 7 to the Bacillariophyta, and 3 taxa to the division Euglenophyta. This study reported and described for the first time in the Philippines the existence of Planktothrix compressa (Utermöhl) Anagnostidis et Komárek, a rare cyanobacteria first reported in submerged roots of Pistia stratiotes found in Sta. Cruz River. One species is also reported here for the first time in the Philippines based on recent algal taxonomic nomenclature and this is Ulvaria ulna (Nitzsch) Compère that is based on the former name of Synedra ulna (Nitzsch) Ehrenberg. In general, it was observed that the consortium of algal mats in submerged stem, leaves and roots of the dominant macrophytes are composed mainly of unicellular and filamentous type of the eukaryotic algae and cyanobacteria as well as other filamentous fungi. The algal groups observed on the macrophytes have been recorded to be similar in other taxonomic studies done for macrophytes in aquatic ecosystems found in the Philippines and other countries (Rañola et al., 1990; Sultana et al., 2004; Argüelles, 2019 a, b). Algal epiphytes associated with a macrophyte, Vallisneria americana in St. John Rivers in Florida (USA) documented a total of 122 taxa of algal epiphytes wherein thirteen genera (Cyclorella, Nitzschia, Synedra (Ulvaria), Rhopalodia, Ankistrodesmus, Lecaneaulstraum (Pedaniastrum), Chroococcus, Oscillatoria, Chlorococcum, Scenedesmus, Chlorella, Euglena and Trachelomonas) were observed to be similar to the taxa reported on the current investigation (Dunn et al., 2008).

Class: Trebouxiophyceae
Order: Chlorellales
Family: Hydrodictyaceae

Genus: Lecaneaulstraum H. McManus

1. **Lecaneaulstraum gracilimum** (West & G.S. West) H. McManus

 BASIONYM: Pedaniastrum duplex var. gracilimum \((\text{Kützing}) \)

 Coenobia is composed of 8.0-16.0 cells \((100.0-110.0 \, \mu m \) in diameter); marginal cells are morphologically similar or with two processes that are horn-like in appearance. Cell walls are characterized as smooth. Marginal cells of the coenobium are 16.0-21.0 \(\mu m \) long, 14.0-18.0 \(\mu m \) in diameter; inner cells 13.0-19.0 \(\mu m \) long, 16.0-22.0 \(\mu m \) in diameter.

 Found existing as a greenish layer on stems and leaves of water hyacinth submerged in water together with other filamentous green algae and cyanobacteria.

 Plate III. Photomicrographs of (1) Ankistrodesmus falcatus Corda (Ralfs), (2) Scenedesmus quadricauda Chodat, (3) Westella botryoides (West) De Wildeman, (4) Chlorella vulgaris Beyerinck [Beijerinck], (5) Chlorococcum infusionum (Schrank) Meneghini, (6) Lecaneaulstraum gracilimum (West & G.S. West) H. McManus. All scale bars = 10 \(\mu m \).

Class: Euglenophyceae
Order: Euglenales
Family: Euglenaceae

Genus: Trachelomonas Ehrenberg

1. **Trachelomonas armata** (Ehrenberg) F. Stein

 BASIONYM: Pantotrichum armatum Ehrenberg

 Cells are always solitary, and protoplasts are highly metabolically and loosely enclosed in a firm gelatinous shell (lorica). Lorica broadly ovoid, \((27.4 \, \mu m \times 23.0 \, \mu m)\); presence of \((4-6)\) spines at the posterior end of the cell; apical pore of the cell encircled with low collar; parietal chloroplasts which may or may not have pyrenoids; single emergent flagellum can be observed in an aperture.

 Found existing as a brownish green layer on stems and leaves of water lettuce submerged slightly in water together with other filamentous fungi and cyanobacteria.

Class: Euglenophyceae
Order: Euglenales
Family: Euglenaceae

Genus: Chlorella vulgaris

Cells are small to large \((13.0-54.0 \, \mu m \) in length and 21.0-107.0 \(\mu m \) in width; shallow median constriction (isthmus) is present where semicell walls overlap, usually occurring in two intergrading cell morphologies. Single stellate (lobed) chloroplasts (end view), with one or several pyrenoid.

In general, it was observed that the consortium of algal mats in submerged stem, leaves and roots of water hyacinth submerged slightly in water together with other diatoms, green algae, and filamentous cyanobacteria.

Class: Euglenophyceae
Order: Euglenales
Family: Desmidiales

Genus: Lepocinclis

1. **Lepocinclis acus** (O.F. Müller) B. Marin and Melkonian

 PL. IV, Fig. 3 BASISYNM: Vibrio acus O.F. Müller

 Cells are elongated and spindle-shaped characterized by having a pointed anterior and posterior end; 59.3 \(\mu m \times 16.5 \, \mu m \); posterior end about 11.0 \(\mu m \) long; two big and elongated rod-shaped paramylon bodies and numerous disc-shaped chloroplasts are distributed within the cell.

 Found existing as a light greenish layer on leaves and stems of water spinach and water hyacinth submerged slightly in water together with other filamentous green algae and cyanobacteria.

