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INTRODUCTION 

 

Probiotic is axiom of the modern period, which means “for life”. This term is 
used for the bacteria which is not harmful but helpful for the host system in 

various ways (Bagchi, 2014). Human gut is a reservoir of over 100–1000 

different microbial species, which constitutes ‘the human-microbiome super-
organism’. In particular, they are vital in the eupepsia, defence function, and the 

brain-gut responses (George Kerry et al., 2018). Probiotics are able to modulate, 
stimulate and control the immune response of host by activating particular genes 

in host cells. They also regulate the release of gastrointestinal hormone and 

modulate the response of brain via bidirectional signalling of neurons 
(Kristensen et al., 2016). According to recent studies the type of microflora 

changes with aging. Human gut microbiota majorly consists of organisms 

belonging to five different phyla Verrucomicrobia, Actinobacteria, Firmicutes, 
Proteobacteria and Bacteroidetes. Among these Firmicutes and Bacteroidetes 

constitute about 90% of the total bacterial species. The ratio of Bacteroidetes to 

Firmicutes decreases with aging and a noticeable decline of Bifidobacteria 

concentration has been reported (Lloyd-Price et al., 2016). The concentration of 

commensal organisms is minimal in stomach due to inhibitory acidic conditions; 

however, it gradually increasesto very high concentrations in the colon. Here the 
microbiota is dominated by gram-negative anaerobic bacteria (Giorgettiet al., 

2015). Health benefits of probiotics are obtained mostly through transient 

colonization of probiotic bacteria and restoration of normal healthy microbiota of 
the gut. Lactobacillus, Bifidobacterium and Saccharomyces are three extensively 

studied and commonly used probiotic strains. Investigators are trying to discover 

novel species of probiotic bacteria (Leuschner et al., 2010). 

 

BENEFICIAL EFFECTS OF PROBIOTICS 
 
Mechanisms by which probiotics affect gut microflora are (1) competition with 

pathogenic microorganisms for nutrients (2) bioconversion (sugars into 

fermentation products) (3) production of growth substrates (extracellular 
polymeric substances or vitamins) (4) production of antimicrobial substances (5) 

competition for binding receptors (6) improvement of epithelial barrier (7) 

reduction of inflammation (8) stimulation of innate and adaptive immune 
response. Adhesion of probiotics initiates the repair of the barrier function by 

secreting antimicrobial substances or proteins, promote mucous secretion through 

the exclusion of pathogens and vital for the immune system functioning (Hirano 

et al., 2003; Perdigónet al., 2002; Schiffrinet al., 1997). All these mechanisms 

are inter-related and help in elimination of pathogens.  

Probiotic organisms affect composition of microbiota by competing for substrate 
availability. In oral cavity, Bifidobacterium strains (B. adolescentis) compete 

with Porphyromonasgingivalis and reduce vitamin K (growth substrate) 

concentration (Hojoet al., 2007). Repair of intestinal tissues is facilitated by 

several mechanisms (1) secretion of organic acids like lactic, formic and 

phenylacetic acid which take down the pH and induces growth inhibition of 
harmful microorganisms (2) building short chain of fatty acids that show benefits 

like reduction of obesity in mice (3) making of antimicrobial compounds such as 

hydrogen peroxide and bacteriocins (Ammoret al., 2006; Choi and Chang, 

2015; Hassan et al., 2012; Macouzetet al., 2009; Ouwehand and Vesterlund, 

2004; Tharmaraj and Shah, 2009) (4) Inhibition of proinflammatory cytokines 
by probiotics result in suppression of inflammation and stimulate immune 

response (Gill et al., 2001, 2000; O’Hara et al., 2006; Sheilet al., 2004; So et 

al., 2008).  

 

GUT-BRAIN AXIS 

 
Gut-brain axis is the two way communication between gastrointestinal tract 

(GIT) and brain. The scaffolding of it consists of GIT, enteric nervous system 

(ENS), central nervous system (CNS), neuroimmune systems, parasympathetic 

and sympathetic arms of the autonomic nervous system and neuroendocrine. 

Signals from brain affect the sensory, motor and secretary function (Grenhamet 

al., 2011). It is synchronized at the immune hormonal, immunological levels and 
neural for homeostasis sustainment (Cryan and Dinan, 2012; Matsumoto et al., 

2013). Various evidences have revealed that the modification in the microbiota of 

gut affects brain function as well as modulates behaviour. Cholecystokinin 
(CCK) is out of the various rich neuropeptides and a ‘brain – gut peptides’ 

member (Liddle, 1994). The postprandial release of CCK plays an important role 

in intestinal feedback control of gastrointestinal function. Therefore, CCK plays a 
vital role in nutrients entry into the small intestine and its digestion (Dockray, 

1976; Dockrayet al., 1978; Muller et al., 1977; Rehfeld and Kruse-Larsen, 

1978; Robberechtet al., 1978; Straus et al., 1977).  
Probiotics modulate and improve stress response, anxiety and mood signs in 

chronic fatigue patients and irritable bowel syndrome (IBS) (Lakhan and 

Kirchgessner, 2010). Variation in the composition of microbiota of gut may be 
linked with pathological process of neurological disorders including autism, 

stress, Parkinson’s disease, Alzheimer’s disease and depression (Dash et al., 

2015; Dinan and Cryan, 2017; Inoue et al., 2016; Kelly et al., 2016; Mahony 

et al., 2015; Pistollatoet al., 2016; Scheperjans, 2016).Fermented milk 

consumption which contains the probiotics mixture has been reported to play a 

role in sensation in healthy women and emotion balance (Tillischet al., 2013). In 
a study, the response of conservatively reared specific pathogen-free (SPF) mice 

and female germ-free (GF) mice were compared.  Female germ-free mice showed 

an elevated response of stress in comparison to the SPF mice. Distorted level of 
gene expression of BDNF (brain-derived neurotrophic factor), serotonin and 

glutamate receptors which have been implicated in anxiety were also seen in the 

Studies on gut microbiota have revealed surprisingly diverse effects on human immune system and the disturbances in composition of 
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specifically deals with the analysis of microbiota of gut in autism spectrum disorders. They are a group of neurological illness which 
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GF mice (Neufeld et al., 2011). Blood brain barrier (BBB) permeability was 
lower in SPF mice as compared to GF mice. Several cases have shown that gut 

microbiome of ASD patients have modifications in the configuration of the 

metabolic products and faecal flora. However, the fundamental mechanisms are 
still remained unknown. [Table 1].  

 

 

Table 1 List of probiotic microorganisms and their observed effects on nervous system 

MICRO-ORGANISMS RESPONSE ORGANISM REFERENCE 

Lactobacillus helveticus and B. longum Decrease the level of anxiety and serum cortisol Human and rats (Messaoudiet al., 2011) 

Lactobacillus reuteri 
Alter immune system 
Decreases anxiety 

Stimulates corticosterone rise 

Mice (Bravo et al., 2011; Ma et al., 2004) 

Lactobacillus rhamnosus 

Decline in stress-induced corticosterone which 

lowered depression-related behaviours and 
anxiety. 

Mice (Bravo et al., 2011) 

Lactobacillus reuteri and L. rhamnosus 

Alterations in GABAA and GABAB which 

changes mRNA expressions 

Alter depression-related behaviours and anxiety  

Mice 
(Bravo et al., 2011) 

 

Bacillus infantis 

Antidepressant properties 
Sprague-Dawley 

rats 
(Cryanet al., 2005; Desbonnetet al., 

2008) 

Relieve stress induced changes 
Preclinical model 

of IBS 
(Desbonnetet al., 2010) 

Lactobacillus casei(Shirota) 
Decline of anxiety but more improvement in 

mood 

Chronic fatigue 

syndrome patients 
(Benton et al., 2007; Rao et al., 2009) 

Lactobacillus acidophilus, Bacillus lactis 

and Lactobacillus fermentum 

Recovery of weak synaptic transmission  

Repair the hippocampus for its LTP 
Reduction in the level of glucose in blood as well 

as 8-OHdG factor by increasing the insulin level  

Activation of superoxide dismutase. 

Diabetic rats (Davariet al., 2013) 

 

Probiotics lower the concentration of inflammatory cytokines and reduce the 

oxidative stress. Probiotic consumption has been shown to increase BDNF: low 
BDNF levels have been correlated with anxiety and depression (Bergamiet al., 

2008; Brenner et al., 2009; Logan and Katzman, 2005; O’Leary et al., 2009; 

O’Mahonyet al., 2005). Probiotics can control various gut-brain axis features 
and simultaneously provide potential benefits in the management of depressive 

behaviours, stress and anxiety, Moreover, disorders, like ASD, mood disorders 

and inflammatory bowel disease, and others are linked to abnormal gut 
microbiota (Li et al., 2017). 

 

POTENTIAL RELATIONSHIPS BETWEEN THE MICROBIOTA AND 

ASD 

 

The GIT mucosa has millions of neurons which consist of ENS and regulate GI 
function. The gut microbiota effects mammalian brain differentiation and 

successive adult behaviour. GI barrier had been shown to be faulty in case of 

ASD in mice model. The faulty GI barrier allows the bacterial products and 
toxins entry into the bloodstream and affects the behaviour of the brain (Hsiao et 

al., 2013; Onoreet al., 2012). Disturbances in the gut microbiota composition 

and their metabolic products were seen in ASD patients and in ASD animal 
models (Borreet al., 2014; de Magistriset al., 2010; Kushaket al., 2016). 

Behavioural manifestations of ASD such as nervousness, self-harm and anger 

have been proved to be linked to GI micro-organisms (Angelis et al., 2015; 

Buieet al., 2010; Mead and Ashwood, 2015). White blood cells and cytokines 

like IL-6, IL-1β, TNF-α and IFN-γ are there in the cross BBB and circulation. On 

brain endothelial cells, TNF-α and IL-1β attach and stimulate immune responses 
(de Theijeet al., 2011; Li et al., 2009). The concentration of these cytokines is 

also modulated by probiotics. ASD affected individuals have higher serum 

concentrations of lipopolysaccharides as compared to the healthy individuals. 
Lipopolysaccharides are the cell wall components of Gram-negative bacteria 

(Emanuele et al., 2010). Microbial products like acetate and propionatecan 

change the BBB function (Branisteet al., 2014). Studies found that intestinal 
components of tight junction (TRIC, CLDN-1and OCLN), the BBB and gut 

barrier were compromised and levels of claudin (MMP-9, CLDN-12, CLDN-5 

and CLDN-3) were higher in the patients from ASD as compared to the control 

mice models (Fiorentinoet al., 2016).Studies showed that microbiota 

modification and GI barrier defects in a mouse resulted in the ASD 
characteristics development in the model. Concentration of bacteria belonging 

toPorphyromonada, Prevotella, Lachnospira and unclassified Bacteroidales in 

progeny of maternal immune activation mothers were found to be higher than the 
control progeny; whereas, the concentration ofRuminococca, Erysipelotricha, 

andAlcaligena were richer in the control individuals (Hsiao et al., 2013).The 

valproic acid induced ASD mice models also demonstrate variations in 
Firmicutes and Bacteroidetes ratio (Theijeet al., 2014a). Table 2 summarizes the 

various researches that compare the gut microbiota in ASD and control subjects. 

Maternal immune activation (MIA) models are produced by triggering 
the maternal immune system by infectious bacteria or their products. This results 

in alterations in cytokines and immunological effectors that are delivered to the 

foetus, producing in abnormal CNS phenotypes.  

 

The gut microflora secretes neuroactive substances such as dopamine (DA), 

histamine and GABA that either activate or inactivate the CNS with the help of 
cranial nerve X (Eisenstein, 2016; Spiller and Major, 2016). Mice researches 

have confirmed the gut microbiota’s role on modulation of concentrations of 

different neuroactive substances (Clarke et al., 2013; Diamond et al., 2011; 

Diaz Heijtzet al., 2011; Neufeld et al., 2011).  Antibiotics have been shown to 

decrease gut microbiota which increases depression-like behaviours and damages 

learning. Further, glucocorticoid receptor intensity and corticotrophin-releasing 
hormone receptor 1 levels were seen altered in previous studies (Hoban et al., 

2017). 

5-HT or Serotonin transporter is synthesized in intestines as well as in brain, 
which regulates mood and cognition (Cryanet al., 2000). It was found that there 

is a connection between the GI symptoms and whole-blood serotonin levels in 

ASD patients (Marleret al., 2016). Theijeet al. (2014b) studied the changes in 
murine model of ASD induced by prenatal exposure to valproic acid (VPA). 

Valproic acid exposed male offspring showed reduced social behaviour, lower 

concentration levels of serotonin in prefrontal cortex and amygdala and other 
changes like epithelial cell loss as well as increased expression of 

neuroinflammatory markers.  
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Table2 Comparison of gut microbiota of ASD and normalsubjects 

ASD compared to Normal Proposed mechanism Samples Reference 

Lesser quantity of the genera Prevotella, 
Coprococcus, and unclassified Veillonellaceae 

None Gut (Kang et al., 2013) 

Higher levels of Firmicutes and Bifidobacterium 
plus lower levels of Clostridium, Lactobacillus, , 

Bacteroidetes, Sarcina, Desulfovibrio and 

Caloramator 

None Gut 
(Adams et al., 2011; De Angelis et 

al., 2013; Finegold, 2011; 

Finegoldet al., 2010, 2002) 

Increased levels of the group Clostridium 
histolyticum (Clostridium clusters II and I) 

Neurotoxins might exert systemic 

effects 
Decrease in Clostridium shows 

improvement in ASD children 

Fecal 
(Parracho, 2005; Sandler et al., 

2000) 

Candida was two times more abundant in autistic 

patients 

Candida discharges toxins and 

ammonia that can induce autistic like 

behaviours 
Deteriorate dysbiosis 

Gut 
(Burrus, 2012; Ioveneet al., 2017; 

Strati et al., 2017) 

 

CONCLUSION 

 

The latest scientific papers prove the relation between human health and gut 

microbiota. Disturbances in composition of gut microbiota are known in many 
diseased related conditions including chronic inflammation, autoimmune and 

neurological disorders. In autistic children a study of the fecal samples showed to 

have abnormally higher concentrations of Clostridium histolyticum group 
(Clostridium clusters II and I) in contrast to healthy children and in which 

neurotoxins released by clostridium being ultimately responsible for the 

disturbances in the gut brain axis that might cause autistic like behaviour. The 
current usage of antibiotics and other antibacterial agents on the intestinal 

microbiota has showed to have some harmful effects while on the other hand, 

probiotics with beneficial effects of useful bacteria has microorganisms 

stimulating the growth of other microorganism which creates a appreciative 

environment for the viability of microorganisms that consequently have a 

beneficial effect on the host. Reduced concentration of Clostridium improved the 
autistic like behaviour in children which proves that probiotics can be a new 

medication therapy for autistic individuals. Probiotics have been shown to restore 

the natural healthy flora of the gut providing benefits to the host. Strong scientific 
evidence has been accumulated that illustrates the two way communication path 

between gut microbiota and the nervous system and its role in maintaining the 

neurological health. These researches are not only a way forward in unravelling 
several baffling patho-physiologies in complex disorders but raise a hope for 

possible therapeutic interventions. Well-designed studies in model organisms or 

other disease models would yield a greater insight into these problems and would 
yield novel therapeutic targets and drugs. 
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8-OHdG – 8-hydroxydeoxyguanosine 
ASD – Autism spectrum disorder 

BBB – Blood brain barrier 

BDNF – Brain-derived neurotrophic factor 
CCK – Cholecystokinin 

CNS – Central nervous system 

DA – Dopamine 
DCs – Dendritic cells 

ENS – Enteric nervous system 

GF – Germ-free 
GI – Gastrointestinal 

GIT – Gastrointestinal tract 

IBD – Inflammatory bowel disease    
IBS – Irritable bowel syndrome 

IECs – Intestinal epithelial cells 

IFN – Interferon 
Ig – Immunoglobulin 

IL – Interleukin 

LPS – Lipopolysaccharide 
MAPK – Mitogen-activated protein kinase 

NF-B – Nuclear Factor- kB 

NK – Natural killer 
SPF – Specific pathogen-free 

TNF-α – Tumor necrosis factor alpha 

 
 

https://doi.org/10.1002/bdrc.21118
https://doi.org/10.1007/s10803-015-2646-8
https://doi.org/10.1016/j.imlet.2014.11.006
https://doi.org/10.1017/S0007114510004319
https://doi.org/10.1111/j.1365-2982.2010.01620.x
https://doi.org/10.1111/j.1365-2567.2006.02358.x
https://doi.org/10.1016/j.psyneuen.2008.09.015
https://doi.org/10.1016/j.bbi.2011.08.007
https://doi.org/10.1099/jmm.0.46101-0
https://doi.org/10.1038/sj.ejcn.1601658
https://doi.org/10.1093/nutrit/nuw023
https://doi.org/10.1186/1757-4749-1-6
https://doi.org/10.1177%2F088307380001500701
https://doi.org/10.1097/wco.0000000000000389
https://doi.org/10.1093/ajcn/66.2.515S
http://dx.doi.org/10.1136/gut.2003.027789
https://doi.org/10.1016/j.molimm.2007.12.010
https://doi.org/10.1038/nrgastro.2016.141
https://doi.org/10.1186/s40168-017-0242-1
https://doi.org/10.1073/pnas.74.7.3033
https://doi.org/10.1111/j.1365-2621.2009.01986.x
https://doi.org/10.1016/j.bbi.2013.12.004
https://doi.org/10.1016/j.bbr.2013.12.008
https://doi.org/10.1053/j.gastro.2013.02.043

