

COLD-ACTIVE MICROBIAL CELLULASE: NOVEL APPROACH TO UNDERSTAND MECHANISM AND ITS APPLICATIONS IN FOOD AND BEVERAGES INDUSTRY

Ghazala Yunus¹ and Mohammed Kuddus^{2*}

Address(es):

¹Department of Basic Science, College of Preparatory Year, University of Hail, Hail-2440, KSA. ²Department of Biochemistry, College of Medicine, University of Hail, Hail-2440, KSA.

*Corresponding author: mkuddus@gmail.com

doi: 10.15414/jmbfs.2021.10.4.524-530

ARTICLE INFO	ABSTRACT
Received 6. 1. 2020 Revised 24. 9. 2020 Accepted 24. 9. 2020 Published 1. 2. 2021	Cellulose, a carbohydrate mainly found in plant cell walls, is most abundant biopolymer on the Earth. Biodegradation of cellulose is carried out by a group of enzymes knows as cellulases. These enzymes play important roles in food processing and used in food industry. In the present era, cold-active enzymes are preferred instead of meso- and thermos-philic counterparts due to less energy requirement for their optimal activity and easy inactivation. The present study includes evaluation of cold-active cellulase from <i>Pseudoalteromonas haloplanktis</i> for its industrial applications in comparison to mesophilic and thermophilic cellulases, through
Regular article	molecular docking method. The binding energy of cold-active cellulase with the substrate cellulose was -126.60 KCals/mole. However, the energy for thermo- and mesophilic cellulase found to be -93.29 and -75.54 KCals/mole, respectively. The results concluded that cold-active cellulase has more efficacy compared to its counterparts and may be used in food processing industry at commercial level.
	Keywords: Cellulase; cellulose; cold-active enzymes; food industry, Pseudoalteromonas haloplanktis, psychrophile

INTRODUCTION

Cellulose is an essential constituent of the primary cell wall of green plants, many forms of algae and the oomycetes (Klemm, et al. 2005). It is one of the most abundant natural biopolymer on the Earth and most dominating renewable agricultural waste with great potential for bioconversion to value-added bioproducts (Sadhu and Maiti 2013). Cellulases are the enzymes that hydrolyze β-1,4 linkages of cellulose chains and help in cellulose degradation. Cellulose degrading microorganisms produce all three types of cellulase components that include endo-1,4- β -D-glucanase (EC 3.2.1.4), exo-1,4- β -D-glucanase (EC 3.2.1.91) and β -glucosidase (EC 3.2.1.21); and produced by bacteria, fungi, protozoans, plants, and animals (Zhang and Zhang 2013). These enzyme components either work separately in an enzyme catalyzed reaction or act synergistically in the form of a complex enzyme for complete cellulose hydrolysis. Cellulases produced by microorganisms have attracted worldwide attention because of their diverse applications in various industries including food and beverage industry. The major industrial applications of cellulases are as an additive in detergents, in food industry, textile industry, pulp and paper industry as well as in agriculture industry for controlling plant pathogens. The details of cellulase applications in various industries are presented in table 1 (Behera et al. 2017; Jayasekara and Ratnayake 2019). In food industry, cellulase is widely used in the coffee processing and wine making due to its cellulolytic activity (Anoop Kumar et al. 2018; Jayasekara and Ratnayake 2019). Cellulase degrades the skin of the grape and along with it removes tannins and the unpleasant aroma (Claus and Mojsov, 2018). Cellulase also used in reducing food spoilage and extraction of fruit juices along with other enzymes by working synergistically (Kuhad et al. 2011). Now cellulases account for a significant share of the world's industrial enzyme market and expected to further increase due to application in pretreated cellulose hydrolysis and formation of bioethanol and other bio-based products at commercial level (Zhang and Zhang 2013; Sadhu and Maiti 2013). It is estimated that the global demand for enzymes will increase upto 4.6 percent through 2020 to \$7.2 billion. Food and beverages will remain the largest market for enzymes by value, with gains driven by increasing consumption of products containing enzymes. United Nation Department of Economic and Social Affairs (UNDESA) estimates that food demand is expected to increase by 70 % by 2050 due to world population 9.1 billion increasing to (http://www.un.org/waterforlifedecade/food_security.shtml). Food enzymes can resolve the shortage of quality food supply globally through increased food production and improvement in the quality such as flavor, texture and nutritional value (Neidleman 1984; Raveendran et al. 2018).

Table 1 Function and use of cellulases in various industry (modified from Behera et al. 2017).

Industry	Function	Application/Use	References	
	Degradation of cell wall constituents;	Fruits juice extraction, food colouring agent, Sensory		
Food industry	reducing viscosity of fruit juice, texture	properties modification of fruits, vegetables and oil,	(Bhat 2000)	
	conservation	decreasing food spoilage		
Beer and wine	Hydrolysis of plant cell wall	Improvement in skin maceration and colour extraction of	(Galante et al.	
	polysaccharides, Modification of	grapes, quality, stability and clarification and aroma of	(Galance <i>et ut.</i> 1998)	
	aromatic residues	wines	1990)	
	Pretreatment of agricultural silage and	Improvement in the nutritional quality of animal feed;	(Cowan 1996;	
Animal feed	grain feed for partial hydrolysis of	increasing weight of broiler chickens; decreasing	Godfrey and	
	lignocellulosic materials	pathogenic bacteria accumulation in large intestine	West 1996)	
Textile and laundry	Break off the small fibre ends on the	Bio-stoning of denim fabrics: bio-polishing of non-denim		
	cotton fabric, thereby loosening the dye	fabrics, defibrillation of lyocell containing fabrics and bio	(Kirk et al. 2002)	
	after washing, prevention or permanent	finishing, production of high quality and environmentally		

	removal of fuzz formation and pilling,	friendly washing powders. Production of high quality	
	Bio-polishing of cotton and non-denim fabrics, defibrillation of lyocell	fabrics	
Pulp and paper	Mechanical pulping, bio-modification of fibres, removing of ink coating and toners from paper	Increase tensile strength, reduce energy consumption, manufacturing of soft papers such as paper towels and sanitary papers	(Kuhad <i>et al.</i> 2010; 2010a)
Agriculture industry	To solubilize plant and fungal cell walls, fungal growth	Plant and fungal protoplasts formation, soil fertility, plant growth	(Beguin and Aubert 1994)
R&D industries	In the process of conjugation and fusion of genes; Expression of heterologous proteins and enzymes	Immobilisation and fusion of proteins, enzymes and antibodies; Production of high levels of proteins, enzymes and antibodies	(Bayer <i>et al.</i> 1995)
Biofuel industry	Conversion of cellulosic material to glucose and other fermentable sugars	Single cell protein formation and fermentation products such as ethanol	(Kuhad <i>et al.</i> 2011)
Pharmacy industries	Digestion of cellulose fiber	Cellulose, hemicellulose and beta-glucan breakdown by hydrolysis, digestin production	(Gupta <i>et al.</i> 2013)
Waste management	Degradation of cellulosic wastes	Environmental pollution control	(Kuhad <i>et al.</i> 2010b)

It is well documented that most of the commercial enzymes, including cellulases, used in various industries are derived from mesophilic or thermophilic microorganisms. However, in food and beverages industries application of coldactive enzymes are always preferred due to the following economic and environmental benefits: (1) high specific activity at low temperatures, (2) reduction in energyconsumptiom, (3) preservation of compounds that are volatile in nature, (4) contamination inhibition, (5) easy inactivation of enzyme by relatively low heat, (6) minimizes undesirable chemical reactions, and (7) decrease the cost of required heat treatments (Adapa et al. 2014; Kuddus and Ramteke 2012; Ramya and Pulicherla 2014). Thus, cold active enzymes from psychrophiles became hot topics, especially in food industry. Due to the enormous applications of cold active cellulase enzyme in different industries, it is required to understand its structural and functional characteristics along with mechanism of cellulose hydrolysis (Zhang and Zhang 2013). In the present study, a well-documented Antarctic microorganism Pseudoalteromonas haloplanktis is considered as an ideal psychrophilic organism used for cellulose degradation (Violot et al. 2005). The study includes investigation of cellulase protein sequences from thermophilic, mesophilic and psychrophilic microorganisms for characterization of their conservation at the level of amino acid and find out enzyme homology. Also, for understanding of enzyme interaction with cellulose substrate, docking studies have been carried out that explain activity and stability of psychrophilic cellulase compared to its thermophilic and mesophilic equivalents.

METHODOLOGY

Reclamation of cellulase sequences and multiple sequence alignment

In this study, sequences of cellulase enzyme were extracted from three different habitats such as psychrophilic, mesophilic and thermophilic. Based on potential industrial importance. Total 38 full-length cellulase sequences including 25 from bacteria, 11 from fungi and 2 from actinomycetes were selected from NCBI (www.ncbi.nlm.nih.gov) in FASTA format. *In silico* analysis and multiple sequence alignment for all three categories of cellulases were performed by the modified method of Ramya and Pulicherla (2014).

Phylogenetic investigation and dendrogram construction

Sequences of cellulase from bacteria, fungi and actinomycetes were aligned by using Clustal Omega (www.ebi.ac.uk/Tools/msa/clustalo/). The approaches given by Ramya and Pulicherla (2014) was used for phylogenetic trees construction.

Crystal structures of cellulases

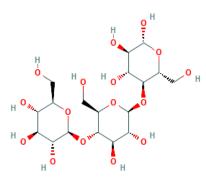
In the present work, most prominent source of microbial cellulase from three different habitats *viz.* thermophilic, mesophilic and psychrophilic were selected. The crystal structure of cellulase from *Rhodothermus marinus* (thermophile), *Bacillus* sp. (mesophile) and *Pseudoalteromonas haloplanktis* (Psychrophile) were extracted from Protein Data Bank (PDB) (Table 2). The preference was given to the crystal structures that were obtained by X-ray diffraction method.

• • • •

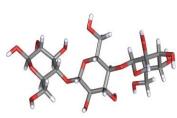
TT ID (

 Table 2 Reported crystalline structures of cellulase enzyme from different bacteria (2000 onwards)

Organism	PDB ID	Total residue (Amino	UniProt	
	PDB ID	acids)	Accession ID	
Xanthomonas citri	5HOS	342	Q8PRD4	
Xanthomonas citri	4W7U	332	Q8PRD3	
Xanthomonas citri	4W7V	332	Q8PRD3	
Xanthomonas citri	4W7W	332	Q8PRD3	
Xanthomonas citri with one mutation	5HPC	377	Q8PRD3	
Xanthomonas citri with triple mutation	5HNN	1011	Q8PRD3	
Caldicellulosiruptor saccharolyticus	5ECU	555	A4XHB2	
Bacillus sp.	5E09	537	D4P8C6	
Bacillus sp.	5E0C	537	D4P8C6	
uncultured bacterium	3WX5	488	W8PWF3	
uncultured bacterium	4HTY	359	I6PLH5	
uncultured bacterium	4HU0	359	I6PLH5	
uncultured bacterium	3111	535	A1E9A6	
uncultured bacterium	3FW6	534	A1E9A6	
Rhodothermus marinus	3B7M	864	O33897	
Rhodothermus marinus	2BW8	454	O33897	
Rhodothermus marinus	2BWA	454	O33897	
Rhodothermus marinus	2BWC	454	O33897	
Rhodothermus marinus	1H0B	512	O33897	
Pseudoalteromonas haloplanktis	1TVN	586	O86099	
Pseudoalteromonas haloplanktis	1TVP	586	O86099	


Analysis of active site

Active site residues of cellulase enzymes was retrieved from PDB database and by docking studied as describe by the method of Laurie and Jackson (2005).


Molecular docking studies

Ligand preparation

The structures of cellulose unit (2D and 3D) was extracted from PubChem database (https://pubchem.ncbi.nlm.nih.gov/) (Fig. 1). The structure was converted to .pdb format and optimized by means of ligand preparation using default settings in Molegro Virtual Docker (MVD-2010,4.2.0). In the structure, hydrogens were added through PyMol software and ligand was prepared for further docking studies (Ramya and Pulicherla 2014).

(b)

Figure 1 Structure of cellulose unit, 2D (a) and 3D (b)

Preparation of receptors (proteins) and docking studies

For docking studies, X-ray crystal structure of thermophilic (3B7M), mesophilic (5E09) and psychrophilic (1TVN) cellulases were retrieved from PDB and molecular structure was optimized through MVD and HYPERCHEM software (Adam 2008). The docking was performed by MVD software and best-docked ligand was determined based on MoleDockScore (Ramya and Pulicherla 2014).

Parameters for docking search algorithms

Parameters for algorithm and scoring functions for docking was used as per the method described by Srikanth et al. (2017).

RESULTS

Reclamation of cellulase sequences and multiple sequence alignment

On the basis documentation and as a maximum enzyme producer, total 38 cellulase sequences from different organisms including bacteria, fungi and actinomycetes were extracted from NCBI. The selection was also based on different habitats of organisms which includes thermophiles, mesophiles and

psychrophiles and their potential applications at industrial level as mentioned in table 1 (Behera *et al.* 2017). The details of organisms, their accession numbers and number of amino acids found in enzymes are presented in Table 3. The result of multiple sequence alignment (Clustal Omega) shows major amino acids that are involved in active site (Fig. 2).

Table 3 Organisms	producing cellulases and their accession numbe	r

SI. No.	Microorganism	Accession number	Length (Amino acids)	
BACTER	RIA		,	
1	Acidothermus cellulolyticus	ABK51910.1	469	
2	Anoxybacillus flavithermus	GAC90965.1	355	
3	Anoxybacillus sp.	EPZ39606.1	361	
4	Bacillus coagulans	AEH52529.1	352	
5	Bacillus sp.	BAB19360.1	824	
6	Bacillus sp. BG-CS10	ADD62401.1	569	
7	Bacillus sp. HY2-3	AAV34758.1	499	
8	Bacillus sp. NBL420	AAK73277.1	440	
9	Bacillus sp. WRD-2	AAX54913.1	499	
10	Cellulomonas fimi	AEE44521.1	567	
11	Clostridium acetobutylicum	KHD37670.1	878	
12	Clostridium autoethanogenum	ALU36597.1	319	
13	Clostridium cellulovorans	ADL50682.1	404	
14	Eubacterium cellulosolvens	EIM57752.1	775	
15	Eubacterium sp.	OLA09410.1	342	
16	Fibrobacter succinogenes	ABU45500.1	910	
17	Methanosarcina thermophila	BAW29155.1	357	
18	Microbispora rosea	SIR96958.1	510	
19	Microbispora sp.	ETK32165.1	536	
20	Pseudoalteromonas haloplanktis	ADI47126.1	493	
21	Pseudomonas sp.	AEM45646.1	467	
22	Pseudomonas stutzeri	AFN77157.1	348	
23	Rhodothermus marinus	AAB65594.1	260	
24	Ruminococcus albus	ADU21423.1	644	
25	Ruminococcus flavefaciens	AAB19708.1	455	
FUNGI				
26	Aspergillus flavus	KOC18344.1	569	
27	Aspergillus niger	CAA03658.1	331	
28	Fusarium solani	CDL74337.1	82	
29	Humicola grisea	BAA12676.1	388	
30	Humicola insolens	CAA53631.1	388	
31	Mucor ambiguus	GAN11144.1	499	
32	Neurospora crassa	EAA30637.1	422	
33	Penicillium brasilianum	OOQ91129.1	374	
34	Thermothelomyces thermophila	AEO58455.1	337	
35	Trichoderma gamsii	KUF02176.1	422	
36	Trichoderma harzianum	KKP03485.1	419	
ACTINC	MYCETES			
37	Streptomyces azureus	GAP48400.1	535	
38	Streptomyces sp.	EGE40950.1	359	

Bacillus MALIQLSFK-SRALMLQTSVNVLLPVGTNAVDFTPSDDF Rhodothermus MNNSSNNHKRKDFKVASLSLALLLGCSTMANAAVEKLTVSGNQILAGGENTSFAGPSLFW Pseudoalteromonas AVEKLTVSGNQILAGGENTSFAGPSLFW .**:***: **:
Bacillus SYDSDPFPVLYLLHGATDDHSAWLRLSSIERYA Rhodothermus SNTGWGAEKFYTAETVAKAKTEFNATLIRAAIGHGTSTGGSLNFDWEGNMSRLDTVVNAA Pseudoalteromonas SNTGWGAEKFYTAETVAKAKTEFNATLIRAAIGHGTSTGGSLNFDWEGNMSRLDTVVNAA * * *
Bacillus EEKKLA VIMPNADMSAYTD MVHGHRYWTYISQELPAFLKATFPISQHRE-DTFAAGLSMG Rhodothermus IAEDMYVIIDFHSHEAHTDQATAVRFFEDVATKYGQYDNVIYEIYNEPLQISWVNDIK Pseudoalteromonas IAEDMYVIIDFHSHEAHTDQATAVRFFEDVATKYGQYDNVIYEIYNEPLQISWVNDIK ::: **: *:** *:: :: :: :: :: :: :: :: :: :: :: :: ::
Bacillus GYGAFKLALRQPERFVAAVSLSGAVDMREVGQP Rhodothermus PYAETVIDKIRAIDPDNLIVVGTPTWSQDVDVASQNPIDRANIAYTLHFYAGTHGQSYRN Pseudoalteromonas PYAETVIDKIRAIDPDNLIVVGTPTWSQDVDVASQNPIDRANIAYTLHFYAGTHGQSYRN *. *: ::::::::::::::::::::::::::::::::::::
BacillusESLF Rhodothermus KAQTALDNGIALFATEWGTVNADGNGGVNINETDAWMAFFKTNNISHANWALNDKNEGAS Pseudoalteromonas KAQTALDNGIALFATEWGTVNADGNGGVNINETDAWMAFFKTNNISHANWALNDKNEGAS :**
BacillusVNAF <mark>GEG</mark> AKIAGTDHDLFHLVKQL Rhodothermus LFTPGGSWNSLTSSGSKVKEIIQGWGGGSSNVDLDSDGDGVSDSLDQCNNTPAGTTVDSI Pseudoalteromonas LFTPGGSWNSLTSSGSKVKEIIQGWGG ::::*
BacillusAGSE <mark>G</mark> AKPAL Rhodothermus GCAVTDSDADGISDNVDQCPNTPVGETVNNVGCVVEVVEPQSD <mark>A</mark> DND <mark>G</mark> VNDDIDQCPDTP Pseudoalteromonas
BacillusFQA <mark>C</mark> GTDDFLYE <mark>D</mark> NVRFRD <mark>Y</mark> ARK <mark>V</mark> NA <mark>N</mark> LT <mark>Y</mark> EE <mark>GP</mark> GGHE Rhodothermus AGTSVDTNG <mark>C</mark> SVVSST <mark>D</mark> CNGINA <mark>Y</mark> PNW <mark>VN</mark> KD <mark>Y</mark> SG <mark>GP</mark> FTHNNTDDKMQYQGNAYSAN Pseudoalteromonas
Bacillus <mark>W</mark> A <mark>Y</mark> WDRMIAHALD <mark>WLPLKTTN</mark> Rhodothermus <mark>W-Y</mark> TNSLPGSDAS <mark>W</mark> TLLY <mark>TCN</mark> Pseudoalteromonas

Figure 2 Multiple sequence alignment of cellulase sequences obtained from meso, thermo and psychrophiles.

Phylogenetic tree and dendrogram

The selected protein sequences obtained from bacteria, fungi and actinomycetes were aligned with the Clustal Omega program. The dendrogram was constructed by using most acceptable and commonly used maximum likelihood method through MEGA software. The result shows that all the organisms appeared in three different clusters. In addition, the bacteria Rhodothermus marinus and and Clostridium acetobutylicum and Eubacterium Microbispora sp; cellulosolvens displayed different clusters. The organisms Penicillium brasilianum, Fusarium solani, Humicola grisea, Humicola insolens, Thermothelomyces thermophila, Trichoderma Aspergillus niger, gamsii. Trichoderma harzianum (among fungi), Pseudomonas sp., Pseudomonas stutzeri, Acidothermus cellulolyticus and Microbispora rosea (among bacteria) showed another clusters with similar sequence level. Other bacteria viz. Clostridium autoethanogenum, Eubacterium sp., Methanosarcina thermophila, Anoxybacillus flavithermus, Anoxybacillus sp. and Bacillus coagulans showed a different group of cluster. Also Fibrobacter succinogenes, Pseudoalteromonas haloplanktis, Bacillus sp., Bacillus sp. HY2-3, Bacillus sp. NBL420, Bacillus sp. WRD-2 and Streptomyces sp. showed sequence similarity and form another cluster. Other organisms including Aspergillus flavus, Clostridium cellulovorans, Streptomyces azureus, Ruminococcus albus, Ruminococcus flavefaciens, Bacillus sp. BG-CS10 and Cellulomonas fimi showed a different group of cluster (Fig. 3).

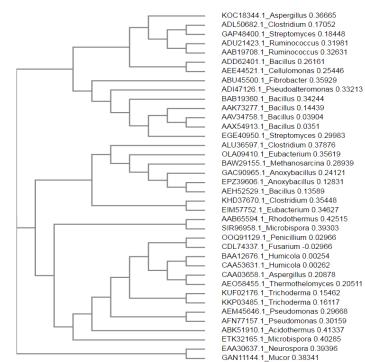


Figure 3 Phylogenetic tree of cellulase sequences

Validation of active sites

Protein sequences related to thermophile (3B7M), mesophile (5E09) and psychrophile (1TVN) were extracted from PDB (Fig. 4, 5 and 6). All the three modeled cellulase enzymes *viz*. thermophilic from *Rhodothermus marinus*, mesophilic from *Bacillus* sp. and psychrophilic from *Pseudoalteromonas haloplanktis* were also confirmed for their active site residues by using blind docking method. Active site residues of thermophilic, mesophilic and psychrophilic cellulases are presented in table 4 and also represented in Figure 7, 8 and 9, respectively.

Table 4 Amino acid residues for active site of cellulase enzyme from thermophilic, mesophilic and psychrophilic microorganisms.

Source	Active site residues		
Thermophilic	HIS75, LEU76, LYS77, LEU120, CYS122,		
Rhodothermus marinus	ASP239, ILE241, ASP260, LYS329		
Mesophilic	ASN84, CYS99, THR104, GLN148,		
Bacillus sp.	GLN155, ASN157, ASN174, PHE175,		
<i>Bacillus</i> sp.	ASN200		
Psychrophilic	TYR27, ASP30, THR31, GLN32, ARG48,		
Pseudoalteromonas	PRO235, ALA236, GLY237, ASP238,		
haloplanktis	GLY239, THR240		

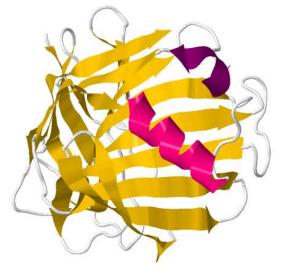


Figure 4 Modeled cellulase enzyme from thermophilic *Rhodothermus marinus* (3B7M)

Figure 5 Modeled cellulase enzyme from mesophilic Bacillus sp. (5E09)

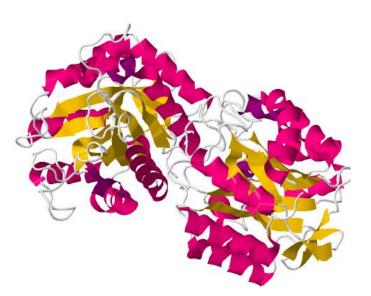


Figure 6 Modeled cellulase enzyme from Psychrophilic *Pseudoalteromonas* haloplanktis (1TVN)

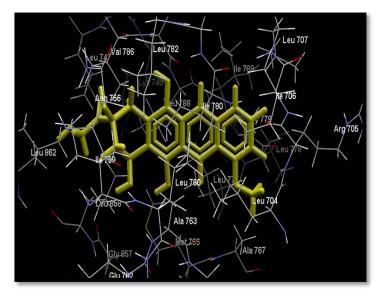


Figure 7 Enzyme cellulase from thermophilic *Rhodothermus marinus* docked with cellulose (in mesh)

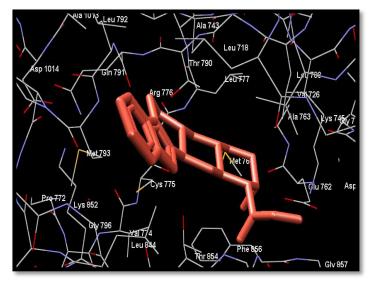


Figure 8 Enzyme cellulase from mesophilic *Bacillus* sp. docked with cellulose (in mesh)

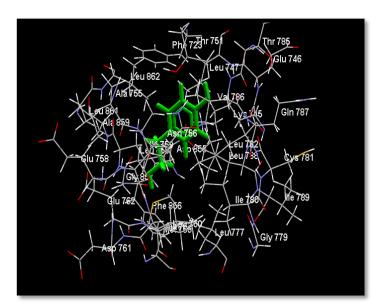


Figure 9 Enzyme cellulase from psychrophilic *Pseudoalteromonas haloplanktis* docked with cellulose (in mesh)

Molecular docking

The enzyme cellulase (receptor) from thermophilic, mesophilic and psychrophilic bacteria were used with the substrate cellulose (ligand) for further docking studies. The proteins were docked with cellulose unit and their binding energy were calculated as presented in table 5 (Figure 7, 8 and 9). The binding energy of the substrate cellulose for thermophilic, mesophilic and psychrophilic cellulase enzymes were -93.29, -75.54 and -126.60 Kcals/mole, respectively. The results concluded that based on different binding affinities of these enzymes, psychrophilic cellulase has shown to be most promising enzyme for substrate binding.

DISCUSSION

Cellulose is the major structural component of higher plants and a leading agricultural waste that can be hydrolyzed by microbial cellulase enzyme. Cellulose degradation by the enzyme cellulase involves hydrolysis of glycosidic bonds connecting the β -D-glucosyl residues of the cellulose. Cellulase has

 Table 5 Docking results of cellulase binding with cellulose ligand

numerous industrial applications especially in food and beverage industries where it is widely used in coffee processing, wine making, degrading skin of the grape, reducing food spoilage and extraction of fruit juices (Behera et al. 2017). The enzymes used at industrial level are mostly isolated from mesophiles or thermophiles. Out of mesophilic and thermophilic enzymes, the second one is preferred due to its thermal stability at high temperature. However, maintaining low temperature (<15°C) play crucial role during in many food processing that maintain quality and propertied of final products (Molina et al. 2007; Ramya and Pulicherla 2014). Cold active enzymes play a significant role in many food industries as the process require mild condition to maintain the taste of products and to avoid spoilage of food materials (Hamid and Mohiddin 2018; Feller 2013; Gerday et al. 2000; Margesin and Schinner 1994; Russell 1998). In biofuel production, cold-active cellulase can produce ethanol from cellulose at low temperature resulting in saving production costs (Li et al. 2019). Cold-active enzymes has more flexibility in comparison to mesophilic and thermophilic enzymes (Adapa et al. 2014; Methe et al. 2005; Somero 2004). Along with coldactive enzymes, its producing microorganisms also possess significant characteristics such as modifications in the primary sequences of the proteins and greater number of flexible regions in order to tolerate the lower temperatures, in comparison to mesophiles and thermophiles.

In this study, cellulase enzymes from thermophilic, mesophilic and psychrophilic bacteria were selected by using bioinformatics tools for the study of similarity at the sequence level between these enzymes. The results of docking studies concluded that cold-active cellulase have strong affinity with the substrate cellulose and are energetically favorable in comparison to thermophilic and mesophilic cellulases. These binding is due to hydrogen bond formation among cellulose and amino acids of cellulase active site that are sufficient for strong bonding affinity (Patil et al. 2010). The cold-active cellulase possess reasonable low binding energy in comparison to its meso and thermo counterparts that clearly indicates higher efficiency of psychrophilic enzymes (Table 5). This finding would be encouraging for further research with respect to cold-active enzymes utilization in food and beverage processing among others. It is important to maintain low temperature in food processing rather than processing at high temperatures because low temperature treatments help in retaining nutritional value and taste and also avoid food spoilage which is very common problems in food processing industries (Nakagawa et al. 2004). The present in silico investigation about industrial enzymes concludes that cold-active enzymes, such as psychrophilic cellulase, have more efficient and beneficial than its counterparts mesophilic and thermophilic cellulases. Further research with different cold-active enzymes will be useful to evaluate and explore their potential at industrial level and their economic feasibility compared to thermophilic and normal mesophilic enzymes.

Туре	Protein	Ligand	Binding Energy	Affinity	Ranked score	Torsion
Thermophilic (Rhodothermus marinus)	Cellulase	Cellulose	-93.29	-20.54	-33.85	5
Mesophilic (Bacillus sp.)	Cellulase	Cellulose	-75.54	-19.00	-56.63	5
Psychrophilic (Pseudoalteromonas haloplanktis)	Cellulase	Cellulose	-126.60	-24.10	-44.00	5

CONCLUSION

Nowadays cold-active enzymes from cold adapted microorganisms referred as an important and valued component in different food and beverages industry. Due to their exclusive low temperatures activity; along with retention of volatile compounds, prevention of contamination and energy saving; make them very attractive for food scientist globally. The present study comprises *in silico* characterization of cellulases obtained from thermophilic, mesophilic and psychrophilic bacteria namely *Rhodothermus marinus*, *Bacillus* sp. and *Pseudoalteromonas haloplanktis*, respectively; and docking studies of enzyme with cellulose substrate was performed. This study may be considered as initial stage for additional *in vitro* research and in industrial applications. The reported cold-active cellulases is more effective than mesophilic and thermophilic cellulases. Additional investigation needed to explore cold-active cellulases for commercial application especially in food and beverages industries.

Conflict of interest: Nothing to declare.

REFERENCES

Adam, J., Kříž, Z., Prokop, M., Wimmerová, M., & Koča, J. (2008). In silico mutagenesis and docking studies of *Pseudomonas aeruginosa* PA-IIL lectin —

Predicting binding modes and energies. *Journal of Chemical Information and Modeling*, 48(11), 2234–2242. https://doi.org/10.1021/ci8002107

Adapa, V., Ramya, L. N., Pulicherla, K. K., & Rao, K. R. S. S. (2014). Cold active pectinases: advancing the food industry to the next generation. *Applied Biochemistry and Biotechnology*, 172(5), 2324–2337. https://doi.org/10.1007/s12010-013-0685-1

Anoop Kumar, V., Suresh Chandra Kurup, R., Snishamol, C., & Nagendra Prabhu, G. (2018). Role of cellulases in food, feed, and beverage industries. *Green Bio-Processes*, 323–343. <u>https://doi:10.1007/978-981-13-3263-0_17</u>

Bayer, E. A., Morag, E., Wilchek, M., Lamed, R., Yaron, S., & Shoham, Y. (1995). Cellulosome domains for novel biotechnological application. *Carbohydrate Bioengineering, Proceedings of an International Conference*, 251–259. https://doi.org/10.1016/s0921-0423(06)80108-5

Beguin, P., & Aubert, J.P. (1994). The biological degradation of cellulose. *FEMS Microbiology Reviews*, 13(1), 25–58. <u>https://doi.org/10.1111/j.1574-6976.1994.tb00033.x</u>

Behera, B. C., Sethi, B. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2017). Microbial cellulases – Diversity and biotechnology with reference to mangrove environment: A review. *Journal of Genetic Engineering and Biotechnology*, 15(1), 197–210. <u>https://doi.org/10.1016/j.jgeb.2016.12.001</u> Bhat, M. K. (2000). Cellulases and related enzymes in biotechnology. *Biotechnology Advances*, 18(5), 355–383. <u>https://doi.org/10.1016/s0734-9750(00)00041-0</u>

Claus, H., & Mojsov, K. (2018). Enzymes for wine fermentation: Current and perspective applications. *Fermentation*, 4(3), 52. https://doi:10.3390/fermentation4030052

Cowan, W.D. (1996). Animal feed. *In*: Industrial enzymology. T. Godfrey and S. West, Eds. Macmillan Press, London, UK, 2nd edition, pp. 360–371.

Feller, G. (2013). Psychrophilic enzymes: from folding to function and biotechnology. *Scientifica*, 2013, 1–28. <u>https://doi.org/10.1155/2013/512840</u>

Galante, Y.M., De Conti, A. & Monteverdi, R. (1998). Application of trichoderma enzymes in food and feed industries. *In*: Harman, G.F., Kubicek, C.P. (eds). Trichoderma & Gliocladium – Enzymes, biological control and commercial applications. Vol. 2. London: Taylor & Francis, pp. 327-342.

Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J.P., Claverie, P., Collins, T., ... Feller, G. (2000). Cold-adapted enzymes: from fundamentals to biotechnology. *Trends in Biotechnology*, 18(3), 103–107. <u>https://doi.org/10.1016/s0167-7799(99)01413-4</u>

Godfrey, T. & West, S. (1996). Textiles. *In*: Industrial Enzymology, Macmillan Press, London, UK, 2nd edition, pp. 360–371.

Gupta, R., Mehta, G., Deswal, D., Sharma, S., Jain, K. K., Kuhad, R. C., & Singh, A. (2013). Cellulases and their biotechnological applications. *Biotechnology for Environmental Management and Resource Recovery*, 89–106. https://doi.org/10.1007/978-81-322-0876-1_6

Hamid, B., & Mohiddin, F. A. (2018). Cold-active enzymes in food processing. Enzymes in Food Technology, 383–400. <u>https://doi:10.1007/978-981-13-1933-4_19</u>

Jayasekara, S., & Ratnayake, R. (2019). Microbial cellulases: An overview and applications. *Cellulose*. <u>https://doi:10.5772/intechopen.84531</u>

Kirk, O., Borchert, T.V., & Fuglsang, C.C. (2002). Industrial enzyme applications. *Current Opinion in Biotechnology*, 13(4), 345–351. https://doi.org/10.1016/s0958-1669(02)00328-2

Klemm, D., Heublein, B., Fink, H.-P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. *Angewandte Chemie International Edition*, 44(22), 3358–3393. <u>https://doi.org/10.1002/anie.200460587</u>

Kuddus, M., & Ramteke, P. W. (2012). Recent developments in production and biotechnological applications of cold-active microbial proteases. *Critical Reviews in Microbiology*, 38(4), 330–338. <u>https://doi.org/10.3109/1040841x.2012.678477</u> Kuhad, R. C., Gupta, R., & Singh, A. (2011). Microbial cellulases and their industrial applications. *Enzyme Research*, 2011, 1–10. <u>https://doi.org/10.4061/2011/280696</u>

Kuhad, R. C., Gupta, R., Khasa, Y. P., & Singh, A. (2010). Bioethanol production from *Lantana camara* (red sage): Pretreatment, saccharification and fermentation. *Bioresource Technology*, 101(21), 8348–8354. https://doi.org/10.1016/j.biortech.2010.06.043

Kuhad, R.C., Gupta, R., & Khasa, Y.P. (2010b). Bioethanol production from lignocellulosic biomass: An overview. *In*: Lal B, Ed., Wealth from Waste, Teri Press, New Delhi, pp. 53-106.

Kuhad, R.C., Mehta, G., Gupta, R., & Sharma, K. K. (2010a). Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by *Saccharomyces cerevisiae*. *Biomass and Bioenergy*, 34(8), 1189–1194. https://doi.org/10.1016/j.biombioe.2010.03.009

Laurie, A. T. R., & Jackson, R. M. (2005). Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. *Bioinformatics*, 21(9), 1908–1916. <u>https://doi:10.1093/bioinformatics/bti315</u>

Li, Y., Wang, Z., Zhou, Y., Zhu, G., & Lin, L. (2019). Enzymatic identification and functional sites study of a novel cold-active cellulase (MkCel5) from *Microbacterium kitamiensea*. *Biotechnology & Biotechnological Equipment*, 33(1), 739–747. <u>https://doi:10.1080/13102818.2019.1612278</u>

Margesin, R., & Schinner, F. (1994). Properties of cold-adapted microorganisms and their potential role in biotechnology. *Journal of Biotechnology*, 33(1), 1–14. https://doi.org/10.1016/0168-1656(94)90093-0

Methe, B. A., Nelson, K. E., Deming, J. W., Momen, B., Melamud, E., Zhang, X., ... Fraser, C. M. (2005). The psychrophilic lifestyle as revealed by the genome sequence of *Colwellia psychrerythraea* 34H through genomic and proteomic analyses. *Proceedings of the National Academy of Sciences*, 102(31), 10913–10918. https://doi.org/10.1073/pnas.0504766102

Molina, A. M., Swiegers, J. H., Varela, C., Pretorius, I. S., & Agosin, E. (2007). Influence of wine fermentation temperature on the synthesis of yeast-derived volatile aroma compounds. *Applied Microbiology and Biotechnology*, 77(3), 675–687. <u>https://doi.org/10.1007/s00253-007-1194-3</u>

Nakagawa, T., Nagaoka, T., Taniguchi, S., Miyaji, T., & Tomizuka, N. (2004). Isolation and characterization of psychrophilic yeasts producing cold-adapted pectinolytic enzymes. *Letters in Applied Microbiology*, 38(5), 383–387. https://doi.org/10.1111/j.1472-765x.2004.01503.x

Neidleman, S. L. (1984). Applications of biocatalysis to biotechnology. *Biotechnology and Genetic Engineering Reviews*, 1(1), 1–38. https://doi.org/10.1080/02648725.1984.10647779 Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. *PLoS ONE*, 5(8), e12029. https://doi.org/10.1371/journal.pone.0012029

Pulicherla, K. K., Ghosh, M., Kumar, P. S., & Rao, K. R. S. S. (2011). Psychrozymes- the next generation industrial enzymes. *Journal of Marine Science: Research & Development*, 01(01). <u>https://doi.org/10.4172/2155-9910.1000102</u>

Ramya, L. N., & Pulicherla, K. K. (2014). Molecular insights into cold-active polygalacturonase enzyme for its potential application in food processing. *Journal of Food Science and Technology*, 52(9), 5484–5496. https://doi.org/10.1007/s13197-014-1654-6

Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A. (2018). Applications of microbial enzymes in food industry. *Food technology and biotechnology*, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491

Russell, N. J. (1998). Molecular adaptations in psychrophilic bacteria: Potential for biotechnological applications. *Advances in Biochemical Engineering/Biotechnology*, 1–21. https://doi.org/10.1007/bfb0102287

Sadhu, S. & Maiti, T.K. (2013). Cellulase production by bacteria: a review. *British Microbiology Research Journal*, 3(3), 235–258. https://doi.org/10.9734/bmrj/2013/2367

Somero, G. N. (2004). Adaptation of enzymes to temperature: searching for basic "strategies". *Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology*, 139(3), 321–333. https://doi.org/10.1016/j.cbpc.2004.05.003

Srikanth, J., Kavimani, S, Reddy, C.U.M. & Chitra, K. (2017). Comparative molecular docking study of phytoconstituents identified in *Morinda citrifolia* Linn on acetylcholinesterase and butyrylcholinesterase. *Journal of Chemical and Pharmaceutical Research*, 9(4),121-125.

Violot, S., Aghajari, N., Czjzek, M., Feller, G., Sonan, G. K., Gouet, P., ... Receveur-Bréchot, V. (2005). Structure of a full-length psychrophilic cellulase from *Pseudoalteromonas haloplanktis* revealed by X-ray diffraction and small angle X-ray scattering. *Journal of Molecular Biology*, 348(5), 1211–1224. https://doi.org/10.1016/j.jmb.2005.03.026

Zhang, X.-Z., & Zhang, Y.-H. P. (2013). Cellulases: characteristics, sources, production, and applications. *Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers*, 131–146. https://doi.org/10.1002/9781118642047.ch8