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INTRODUCTION 

 

Mathematical models have been used to evaluate microbial behavior such as 

inactivation, survival or growth under different environmental conditions (Gwak 

et al., 2015). The growth of a homogenous microbial population in a closed 

habitat can be described by a sigmoidal curve with three phases: lag, exponential 

and death (Lebert and Lebert, 2006). Growth of microorganisms can be 

described by several models and one can find many state of the art reviews on the 

primary growth models (McKellar and Lu, 2004; Peleg and Corradini, 2011). 

Growth models such as Baranyi and Gompertz models are deterministic viz., 

models always give the same output when provided with the same input (no 

uncertainty) (Heldman and Newsome, 2003). However, biological variability in 

strains of a bacterial specie and in model parameters, and experimental 

uncertainty play an important role. Hence, stochastic modeling i.e., a model that 

gives a variable output when provided with the same input (variability is a part of 

the model) (Heldman and Newsome, 2003) should be investigated more deeply.   

Monte Carlo (MC) analysis is based on random computer simulations of the 

experimental data which are described by a mathematical model. It is most 

probably the simplest and the best analysis to describe the uncertainty in model 

parameters (van Boekel, 2009). The usage of MC in the field of predictive 

microbiology can be found in literature (Abe et al., 2019; Cassin et al., 1998; 

Coleman and Marks, 1999; Koyama et al., 2019; Nauta, 2000; Nicolaï and Van 

Impe, 1996). Furthermore, it was also used for primary growth models such as 

Baranyi model (Poschet et al., 2004; 2003) and Gompertz model (Lambert et 

al., 2012). 

The main objective of this study was to investigate MC analysis for most 

commonly used isothermal microbial growth models, namely the Gompertz, the 

Baranyi and the three-phase linear models with three different published 

isothermal growth data sets of Listeria monocytogenes. Further objective was to 

make comparisons between the models based on the results of MC simulations 

such as correlations of the model parameters. 

 

MATERIALS AND METHODS 

 

Data sets 

 

Growth data of Listeria monocytogenes in three different studies were used as the 

data bases for this study. Lambert et al. (2012) listed the growth data of L. 

monocytogenes at 30 °C in Tryptic Soy Broth containing 9% salt. Alavi et al. 

(1999) showed the growth data of L. monocytogenes Scott A at 4 °C in sterilized 

whole milk with a figure. Data given in the figure of Alavi et al. (1999) were 

digitized using WinDIG 2.5 (Lovy, 2002). McKellar (1997) also showed the 

growth data of L. monocytogenes Scott A at 5 °C Tryptic Soy Broth 

supplemented with 0.6% yeast extract with a figure. The data in the figure of 

McKellar (1997) were tabulated by McKellar and Lu (2004). All data were 

organized in a Microsoft® Excel (Microsoft Corporation, Redmond, WA, USA) 

spreadsheet before to use. 

 

Mathematical models 

 

Modified Gompertz model 

 

The British mathematician Benjamin Gompertz introduced a formula to describe 

the mortality of humans in 1825 (Gompertz, 1825). A century later it was 

applied as a growth model [Eq.(1)] (Winsor, 1932) and although it was more 

popular at the beginning of 1990s, today it is still a commonly used model to 

describe microbial growth data (Peleg and Corradini, 2011). Zwietering et al. 

(1990) reparametrized the original Gompertz equation in order to obtain 

interpretable parameters. This modified version of the Gompertz model was used 

in the present study and for simplicity we used the term “Gompertz model” not 

the modified Gompertz model: 

 

Three most commonly used primary models (Gompertz, Baranyi and three-phase linear models) to describe the microbial growth curves 

were applied to three different isothermal growth data of Listeria monocytogenes. Further Monte Carlo analysis was performed with 

100, 1000 and 10000 simulations. The results indicated that there was no reason to use higher number of simulations since the 

simulations produced almost identical means of the model parameter values for all models. Moreover, the models had similar coefficient 

of variation values for the initial (log10N0) and maximum (log10Nmax) number of bacteria. On the other hand, the Gompertz model had the 

highest coefficient of variation for the growth rate (µmax) and the Baranyi model had the highest coefficient of variation for the lag time 

(λ). Correlations between the parameters log10N0 and λ, and µmax and λ could be easily observed after the Monte Carlo analysis for all 

models. Deviation from normal distribution for the parameter λ for the three-phase linear model was evident, other than that all 

parameters for all models had normal distribution. It was concluded that Monte Carlo analysis can be used as a simple yet an effective 

method to describe the uncertainty in model parameters and correlation between the parameters as well as the spread of the possible 

parameter values. 
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log10𝑁(𝑡) =

log10𝑁0 + (log10𝑁𝑚𝑎𝑥 − log10𝑁0) ∙ 𝑒𝑥𝑝 {−𝑒𝑥𝑝 [
𝜇𝑚𝑎𝑥∙𝑒

(log10𝑁𝑚𝑎𝑥−log10𝑁0)
∙ (𝜆 − 𝑡) +

1]}                (1) 

 

where log10N0 is the initial number of bacteria while log10Nmax is the maximum 

number of bacteria reached during the growth. The maximum growth rate and lag 

time are denoted by µmax and λ, respectively. 

 

Baranyi model 

 

Baranyi and Roberts (1994) proposed a microbial growth model, which is 

perhaps the most commonly used microbial growth model today: 

 

𝑑𝑁(𝑡)

𝑑𝑡
=

𝑞(𝑡)

1+𝑞(𝑡)
∙ 𝜇𝑚𝑎𝑥

′ ∙ 𝑁(𝑡) ∙ {1 − [
𝑁(𝑡)

𝑁𝑚𝑎𝑥
]

𝑚

}                                  (2) 

 

and   

 
𝑑𝑞(𝑡)

𝑑𝑡
= 𝜇𝑚𝑎𝑥

′ ∙ 𝑞(𝑡)                                                                         (3) 

 

where q(t) represents the concentration of a critical substance for bacterial 

growth, and the term q(t)/[1+q(t)] in Eq.(2) represents the physiological state of 

the cells and also associated with the with the lag time (λ) through the introduced 

parameter h0 = 𝜇𝑚𝑎𝑥
′ ·λ which appears in the solution of the rate equation (Peleg 

and Corradini, 2011). The curvature parameter, m, is generally set to 1 for 

simplicity. Note that 𝜇𝑚𝑎𝑥
′  is the maximum specific growth rate. 

 

For static environmental conditions such as the constant temperature the 

following analytical solution could be obtained (Poschet et al., 2005): 

 

𝑁(𝑡) =
𝑁𝑚𝑎𝑥∙𝑁0∙[

1+𝑞0∙𝑒𝑥𝑝(𝜇𝑚𝑎𝑥
′ ∙𝑡)

1+𝑞0
]

𝑁𝑚𝑎𝑥−𝑁0+𝑁0∙[
1+𝑞0∙𝑒𝑥𝑝(𝜇𝑚𝑎𝑥

′ ∙𝑡)

1+𝑞0
]
                                                  (4) 

 

It is known that 𝑞(𝑡 = 0) = 𝑞0 =
1

𝑒𝑥𝑝(ℎ0)−1
 (Jaloustre et al., 2011; Manthou et 

al., 2019) and in order to compare the growth rates of Baranyi and Gompertz 

models we made the modification 𝜇𝑚𝑎𝑥
′ = ln 10 ∙ 𝜇𝑚𝑎𝑥 in the equation where 

µmax is the maximum growth rate. Therefore, in the end we used the following 

equation to obtain the parameters of the Baranyi equation: 

 

log10 𝑁(𝑡) =

log10 𝑁𝑚𝑎𝑥 + log10 {
1+𝑒𝑥𝑝[ln 10∙𝜇𝑚𝑎𝑥∙(𝑡−𝜆)]−𝑒𝑥𝑝(− ln 10∙𝜇𝑚𝑎𝑥∙𝜆)

𝑒𝑥𝑝[ln 10∙𝜇𝑚𝑎𝑥∙(𝑡−𝜆)]−𝑒𝑥𝑝(− ln 10∙𝜇𝑚𝑎𝑥∙𝜆)+10(log10 𝑁𝑚𝑎𝑥−log10 𝑁0)}                               

(5) 

 

Three phase linear model 

 

Buchanan et al. (1997) introduced a simple model to describe isothermal growth 

curves: 

 

If 𝑡 ≤ 𝜆 log10𝑁(𝑡) = log10𝑁0 

If 𝜆 < 𝑡 < 𝑡𝑚𝑎𝑥 log10𝑁(𝑡) = log10𝑁0 + 𝜇 ∙ (𝑡 − 𝜆)                      (6) 

If 𝑡 ≥ 𝑡𝑚𝑎𝑥 log10𝑁(𝑡) = log10𝑁0 + 𝜇 ∙ (𝑡𝑚𝑎𝑥 − 𝜆) 

 

Note that log10Nmax can be calculated as log10N0 + µ·(tmax – λ) where tmax is the 

time at which maximum population (log10Nmax) is reached. Moreover, since the 

slope of the exponential phase is constant i.e., exponential phase is described by a 

linear line, µ was used instead of µmax contrary to Gompertz and Baranyi models. 

 

Monte Carlo analysis 

 

To perform MC analysis or simulation two information are necessary: (i) 

adequate mathematical model or models; (ii) uncertainty or standard deviation in 

the experimental data (van Boekel, 2009). Since the aforementioned models were 

used to describe the growth data of L. monocytogenes, only experimental 

uncertainty should be determined. For the plate count data experimental error is 

in the order of 1 log10 unit (Jarvis, 1989; Mossel et al., 1995) therefore, datum 

point ± 0.5 log10 unit was used for MC simulation (Poschet et al., 2003) for the 

data of Lambert et al. (2012) and Alavi et al. (1999). For the data of McKellar 

(1997) datum point ± 0.35 log10 unit was used because generated data with ± 0.5 

log10 unit made the models inappropriate (several negative lag times were 

obtained for each number of simulations) – data not shown. 

 MC analysis were performed as follows: 

1. Models were fitted to each data set and parameters (log10N0, log10Nmax, 
µmax and λ) were estimated as usually. 

2. By using the models and their estimated parameters, perfect data were 

obtained. 
3. Data were randomly generated on the perfect data with ± 0.5 log10 unit 

[± 0.35 log10 unit for the data of McKellar (1997)]. Since many 

generations should be repeated depending on the problem, we ran the 
simulations for 100, 1000 and 10000 times in order to make 

comparisons between the simulations and the models. 

4. Generated data sets were fitted with the suitable model one by one and 
the parameters were tabulated. 

5. Tabulated parameters were transformed into histograms and 

correlation plots between the parameters were sketched for 100, 1000 
and 10000 simulations separately. 

MATLAB version 9.3 (The MathWorks, Inc., Natick) was used for data 

generation and model fitting, and SigmaPlot version 12.00 (Chicago, IL, USA) 

was used for plotting the graphs. 

 

RESULTS AND DISCUSSION 

 

Comparison of the models  

 

Three models, namely the Gompertz [Eq.(1)], the Baranyi [Eq. (5)] and the three-

phase linear [Eq.(6)] models were fitted to each data set and parameters were 

estimated by non-linear regression. Fig. 1 shows the fit of the models for the data 

set of Lambert et al. (2012) and parameter estimates are given in Table 1. 

Adjusted coefficient of determination (R2
adj) and root mean square error (RMSE) 

values were used to determine the goodness-of-fit of the models. Although the 

difference between the Gompertz model and the Baranyi model was very small, 

the Gompertz model was the best model since it had the highest R2
adj and lowest 

RMSE values (Table 1). Based on R2
adj the Baranyi and the three phase linear 

models had both the best and identical goodness-of-fits for the data set of Alavi 

et al. (1999); however, based on RMSE, which is the most informative indices of 

goodness-of-fit according to Ratkowsky (2004) the Baranyi model was superior. 

The Gompertz model had the worst goodness-of-fit for the data set of Alavi et al. 

(1999) – see Table S1. For the data set of McKellar (1997) the Baranyi model 

was again the best model followed by the Gompertz and the three phase linear 

models (Table S2). 

 

 

Table 1 Parameters of growth models ± standard errors and goodness-of-fit of the models for the growth data of Listeria monocytogenes at 30 °C in 

Tryptic Soya Broth containing 9% salt. Original data are from Lambert et al. (2012). 

 log10N0 log10Nmax µmax/µ λ tmax R2
adj RMSE 

Gompertz 3.9506 ± 0.0279 8.8493 ± 0.0362 0.1714 ± 0.0050 19.8242 ± 0.4993 — 0.9982 0.0908 

Baranyi 3.9139 ± 0.0303 8.7399 ± 0.0307 0.1441 ± 0.0035 17.8966 ± 0.5625 — 0.9981 0.0923 

Three phase linear 3.9583 ± 0.0279 8.7511a 0.1311 ± 0.0028 16.6997 ± 0.5106 53.2579 ± 0.5278 0.9975 0.1072 
a Calculated from log10N0+µ·(tmax–λ)  
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Figure 1 Growth data (gray circles) of Listeria monocytogenes at 30 °C in Tryptic Soya broth containing 9% salt. Data were 

fitted with the Gompertz model (a); the Baranyi model (b) and three phase linear model (c). Original data are from Lambert 

et al. (2012). 

 

Similar initial number of bacteria (log10N0) was obtained for all models whereas 

the Gompertz model gave the highest maximum number of bacteria (log10Nmax). 

On the other hand, the Baranyi and the three phase linear models had almost 

identical log10Nmax values (Table 1). The Gompertz model produced the highest 

maximum growth rate (µmax) and lag time (λ) values while the three phase linear 

model had the lowest and the Baranyi model was in between being closer to the 

three phase linear model (Table 1). This discussion was also valid for the other 

data sets (Alavi et al., 1999; McKellar, 1997) where the model fits and 

parameter estimates are given in Figs. S1 and S2, and Table S1 and S2, 

respectively. 

The Gompertz model has a specific curvature around the inflection point of the 

“S” shaped curve (Baranyi et al., 1993) and therefore it was not surprising that it 

produced highest µmax and λ values. Lag time calculation with the Gompertz 

model could give wrong outcomes since growth may occur before the estimated 

λ. Many researchers pointed out the limitations of the Gompertz equation, 

especially the overestimation of µmax and λ (Dalgaard, 1995; McKellar and 

Knight, 2000; Membré et al., 1999; Whiting and Cygnarowicz-Provost, 

1992). Moreover, unlike the Baranyi and the three phase linear models the 

Gompertz model did not reach to a plateau (Figs. 1, S1 and S2) that is why 

log10Nmax was also highest for the Gompertz model (Tables 1, S1 and S2). 

 

Monte Carlo analysis for the growth models 

 

A step by step explanation of MC analysis for the data of Lambert et al. (2012) 

is shown in Fig. 2. Note that three replications were performed at each time value 

by Lambert et al. (2012) hence three data were generated randomly for each 

point. On the other hand, since one datum point at each time value were given by 

Alavi et al. (1999) and McKellar (1997) only one datum was generated for each 

point – see Figs. S3 and S4. 

 
Figure 2 Monte Carlo analysis steps [Adapted from Poschet et al. (2003)]: 

Original growth data (gray circles) of Listeria monocytogenes from Lambert et 

al. (2012) (a); Fit of the Gompertz model (solid line) to the data (b); Perfect data 

(white circles) from the fit of the Gompertz model (dashed line) (c); Perfect data 

(white circles) with ± 0.5 log10 unit error (error bars) added (d); Randomly 

generated data (crosses) within ± 0.5 log10 unit error (e); Fit of the Gompertz 

model (solid line) to the randomly generated data. 

 

Results of MC analysis for the data of Lambert et al. (2012) is given in Table 2. 

There was no significant difference (p > 0.05) between 100, 1000 and 10000 

simulations in terms of parameters’ means for all the models tested which could 

be also said for the other two data sets (Tables S3 and S4). This result indicated 

that there was no reason to use high number of simulations: 100 simulations was 

enough for microbial growth data. Garre et al. (2019) also stated that increasing 

number of iterations performed by R code i.e., using more than 100 simulations 
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had no impact on the results for microbial inactivation. Lambert et al. (2012) 

used the Gompertz model [the one proposed by (Gibson et al., 1987)] and 

showed that parameter estimates (means) of 100 simulations with Excel and 

10000 simulations with Mathematica were almost identical. Our finding with 

same data set but with different growth models applied were similar to those of 

Lambert et al. (2012). Moreover, results of two more data sets did support this 

judgement. The results of Lambert et al. (2012) and the present study also 

brought out that Excel which is easy to access, could be safely use to generate 

100 simulations randomly plus SOLVER Add-In package of Excel could be used 

to fit the non-linear models to the generated data Lambert et al. (2012). Note 

that SOLVER in Excel could not produce parameter estimates with their 

uncertainties, that is to say standard errors or confidence intervals of the 

parameters could not be obtained. However, MC simulation can be used together 

with the SOLVER tool in Excel to obtain confidence intervals (Lambert et al., 

2012). Also note that the Bayesian approach may also be used instead of the 

procedure presented here. However, the aim here was to show the MC method. 

Moreover, Bayesian procedure requires learning and applying of a programming 

language like R or Phyton (van Boekel, 2020).  

 

Poschet et al. (2003) performed MC analysis 5 times (for the growth data of L. 

innocua and Escherichia coli fitted with the Baranyi model) for different number 

of iterations and observed that 10000 iterations, compared to 100 and 1000, 

produce more stable mean values of parameters and standard deviations i.e., less 

variation on the mean value of the parameters of the Baranyi model is seen 

(Poschet et al., 2003). Nevertheless, the gap between the mean values of the 

parameters obtained from 100, 1000 or 10000 iterations were low. 

 

 

Table 2 Results of Monte Carlo simulation (100, 1000 and 10000 iterations) for the growth data of Listeria monocytogenes at 30 °C in Tryptic Soya Broth containing 9 

% salt. Original data are from Lambert et al. (2012). 

Models  nMC=100 nMC=1000 nMC=10000 

  mean SD max min mean SD max min mean SD max min 

G
o

m
p
er

tz
 

log10N0 3.9426 0.0851 4.1008 3.6887 3.9417 0.0900 4.2139 3.6528 3.9457 0.0905 4.2662 3.5793 

log10Nmax 8.8528 0.1098 9.1550 8.5892 8.8502 0.1097 9.1742 8.5196 8.8530 0.1178 9.2614 8.0650 

µmax 0.1734 0.0162 0.2308 0.1410 0.1742 0.0165 0.2569 0.1325 0.1735 0.0172 0.2584 0.1261 

λ 19.7194 1.7137 23.3838 15.4943 19.8599 1.6202 24.3135 14.5430 19.8088 1.6492 25.3145 11.3496 

R2
adj 0.9824 0.0030 0.9894 0.9758 0.9821 0.0032 0.9909 0.9719 0.9820 0.0036 0.9928 0.8910 

RMSE 0.2844 0.0246 0.3378 0.2128 0.2866 0.0256 0.3570 0.2024 0.2871 0.0272 0.7099 0.1798 

B
ar

an
y
i 

log10N0 3.9075 0.0960 4.1198 3.6852 3.9088 0.0955 4.1901 3.5757 3.9081 0.0972 4.2604 3.4432 

log10Nmax 8.7451 0.1045 8.9867 8.4899 8.7421 0.0986 9.0333 8.3688 8.7404 0.0991 9.0807 7.6511 

µmax 0.1454 0.0138 0.1862 0.1208 0.1455 0.0115 0.1997 0.1143 0.1456 0.0117 0.2080 0.1146 

λ 17.8898 2.1491 22.5461 12.4060 17.8800 1.7929 23.5385 11.6603 17.9002 1.8335 24.6656 10.7995 

R2
adj 0.9823 0.0033 0.9907 0.9728 0.9818 0.0033 0.9953 0.9716 0.9819 0.0041 0.9939 0.8681 

RMSE 0.2846 0.0256 0.3616 0.2083 0.2886 0.0255 0.3629 0.2060 0.2875 0.0286 0.7878 0.1763 

T
h

re
e 

p
h
as

e 

li
n

ea
r 

log10N0 3.9496 0.0896 4.1481 3.7827 3.9448 0.0879 4.1775 3.6484 3.9474 0.0892 4.2550 3.5989 

log10Nmax 8.7510 0.0854 8.9303 8.5256 8.7471 0.0967 9.0558 8.4795 8.7515 0.0971 9.1056 8.3730 

µ 0.1308 0.0075 0.1501 0.1145 0.1303 0.0082 0.1865 0.1070 0.1302 0.0079 0.1754 0.1058 

λ 16.4569 1.4053 19.2351 13.6440 16.3668 1.6503 23.4073 11.4327 16.3702 1.5900 23.1961 10.0007 

R2
adj 0.9814 0.0031 0.9891 0.9732 0.9817 0.0034 0.9919 0.9705 0.9819 0.0033 0.9927 0.9685 

RMSE 0.2923 0.0256 0.3571 0.2247 0.2887 0.0266 0.3681 0.1921 0.2877 0.0264 0.3893 0.1904 

 

If the mean of the goodness-of-fit indices (R2
adj and RMSE) given in Tables 2, S3 

and S4 were investigated comparison between the models could be made. 

Although such a comparison may not be appropriate since MC analysis was 

based on the perfect fit of each model, it may be useful to differentiate between 

the number of simulations. For example, the Gompertz model was the best model 

followed by the Baranyi and three-phase linear models for the data of Lambert 

et al. (2012) when standard non-linear fitting procedures were applied – see 

Table 1. This ranking was unchanged after the MC analysis with 100, 1000 and 

10000 simulations. On the other hand, although there was a slight difference 

between the Baranyi model and the three phase linear models, the Baranyi model 

produced the best fit while the Gompertz model had the worst fit for the second 

data set (Alavi et al., 1999). MC analysis changed this sequence: the three-phase 

linear model was the first, the Gompertz model was the second and the Baranyi 

model was the third for 100 simulations. For 1000 and 10000 simulations three-

phase linear model was again the best model followed by the Baranyi and the 

Gompertz models (see Tables S1 and S3).  

 

Comparing coefficient of variation (CV) (SD/mean×100) of all iterations 

revealed that similar CVs were obtained for log10N0 and log10Nmax for the models 

tested (about 1 to 3%) whereas the Gompertz model had the highest CV (about 

10%) for µmax followed by the Baranyi (about 8%) and the three phase linear 

(about 6 %) models. For the parameter λ, the Baranyi model had the CV (about 

12%) followed by the three phase linear (about 10%) and the Gompertz (about 

9%) models. This could be better visualized by looking at Fig. 3 where the results 

of 100 iterations are shown for three models: similar CVs for log10N0 and 

log10Nmax for all models can be observed in Fig. 3 for the data of Lambert et al. 

(2012). Furthermore, lower CV values of the parameter µ for three phase linear 

model could also be seen; however, interpreting the parameters µmax and λ was 

not that easy for the Gompertz and Baranyi models.  

Figure 3 Monte Carlo analysis with 100 simulations for the Gompertz (a); the 

Baranyi (b) and the three-phase linear (c) models. Original data are from 

Lambert et al. (2012). 
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Figure 4 Correlation plots obtained from Monte Carlo analysis with 1000 

simulations for the parameters of the Gompertz model. Original data are from 

Lambert et al. (2012). 

 

MC analysis can also be used to assess the pairwise correlations between 

parameters (van Boekel, 2009). Figs. 4, 5 and 6 display the results of 1000 

iterations of MC analysis for the correlations between the parameters of the 

Gompertz, the Baranyi and the three phase linear models, respectively. It can be 

clearly seen that there was a strong correlation between the parameters log10N0 

and λ, and µmax and λ. This was also valid for the other data sets – data not shown. 

Structural correlations between log10N0 and λ, and between µmax and λ for the 

Gompertz and the Baranyi models were also shown by Baty and Delignette-

Muller (2004) by plotting 95 % confidence regions for the λ estimates compared 

to log10N0, log10Nmax and µmax. We have shown the same result by using MC 

analysis with three different data sets including the three-phase linear model. 

Note that correlations had little or no effect on parameter estimations – see 

Tables 1, S1 and S2 for parameter values and their corresponding standard errors. 

High correlation between parameters does not always indicate failure of 

parameter estimation. Furthermore, the scaled sensitivity coefficients (SSCs) for 

all 4 parameters for each model (see Dolan and Mishra, 2013 for example) 

could be used to understand at which part of the experiment there is a correlation 

between the parameters. SSCs would show that the log10N0 and λ were not 

correlated in the first 1/3 of the experiment, so they can be estimated easily, and 

the peak of the µmax SSC occurred well before the peak of the λ SC, that is why 

these two parameters too can be estimated separately. 

 
Figure 5 Correlation plots obtained from Monte Carlo analysis with 1000 

simulations for the parameters of the Baranyi model. Original data are from 

Lambert et al. (2012). 

 
Figure 6 Correlation plots obtained from Monte Carlo analysis with 1000 

simulations for the parameters of the three-phase linear model. Original data are 

from Lambert et al. (2012). 

 

Figure 7 Histograms of Monte Carlo analysis with 10000 simulations for the 

parameters log10N0 and log10Nmax. Numbers given just under each graph are the 

mean values and values given in parenthesis are 95% confidence intervals 

calculated from the 95% percentiles. Original data are from Lambert et al. 

(2012). 

 

 
Figure 8 Histograms of Monte Carlo analysis with 10000 simulations for the 

parameters µmax/µ and λ. Numbers given just under each graph are the mean 

values and values given in parenthesis are 95% confidence intervals calculated 

from the 95% percentiles. Original data are from Lambert et al. (2012). 
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Tabulated parameter values given in Table 2 were transformed into histograms 

for 10000 simulations (Figs. 7 and 8). It was clear from Fig. 7 that distributions 

for the parameters log10N0 and log10Nmax were normal for all models. Similarly, 

for the growth rate parameter (µmax/µ) all models had normal distribution. 

However, histogram for three-phase linear model given in Fig. 8 clearly indicated 

the deviation from normality for the parameter λ which were also true for the 

other two data sets – see Figs. S5 and S6. 

 

CONCLUSION 

 

Three most commonly used growth models were fitted to three different data sets 

and MC analysis were also performed in the present study. It was observed that 

100 MC simulations produced almost identical parameter values with those of 

1000 and 10000 simulations. Therefore, it was concluded that using high number 

of simulations was unnecessary for microbial growth models. All models had 

similar CV values for the parameters log10N0 and log10Nmax. While the Gompertz 

and the Baranyi models had the highest CV for the parameters µmax and λ, 

respectively. MC analysis also showed that there were strong correlations 

between the parameters log10N0 and λ, and µmax and λ. All models’ parameters had 

normal distribution except the parameter λ for three-phase linear model. 
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