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INTRODUCTION 

 

Plants are a basic food source for humans. Many fruits enter into the food 

industries that contribute to national income and it is important to achieve food 

security (Beghi et al., 2018; Ratnadass et al., 2012). Tomato (Solanum 
lycopersicum L.) is among the most important crops globally, which contributes 

to agricultural industries (Boriss & Brunke, 2005). Where the area planted with 

tomato crops worldwide reached 4,850 million hectares, while the global 
production amounted to 3,700 tons per hectare (FAO, 2019). China is the highest 

producer of tomato, followed by The United States and India (Guan et al., 2018). 

However, plants, in general, are exposed to many diseases that affect their 

quantity and quality, causing economic losses (Khaled et al., 2018). Tomato 

crop, in particular, is subjected to many diseases, whether at pre-harvest or post-

harvest phases (Nabi et al., 2017). Gray mold disease caused by B. cinerea 
fungus is one of the most diseases that affect the quality of tomato fruits, 

especially during the post-harvest chain (Elad & Shtienberg, 1995; Smith et al., 

2014). 
Many ways contribute to the detection of plant diseases, such as the naked eye or 

laboratory-based method (Kandpal & Cho, 2014). However, these methods take 

time and mainly depend on the appearance of symptoms (Martinelli et al., 2015; 
Rizk, 2018). Therefore, it is necessary for early detection of the disease before 

symptoms appear to avoid economic losses, also to save the environment by 

reducing the using chemical pesticides (Alemu, 2015). For that reason, the trend 
is towards promising and alternative methods such as visible/near-infrared 

(VIS/NIR) technology for early detection of diseases (Saeys et al., 2019; Wu et 

al., 2008). The VIS/NIR technique is fast, accurate, non-destructive and it is a 
sensing technology that has already successfully managed to detect many plant 

pathogens before symptoms appeared (You et al., 2019). 

The VIS/NIR spectroscopy principle is based on the vibration of particles for 
materials, as a result of energy absorption by the photon when the constituent 

bonds (O-H, N-H and C-H) are exposed to the VIS/NIR spectrum (El-Mesery et 

al., 2019). It can be applied in three modes i.e. reflectance, interactance and 

transmittance mode (Nicolai et al., 2014). Usually, reflectance mode (R) is 

applied because it is considered the easiest method and has a high energy of 80% 
and later converted to absorption (log 1/R) for fruit measurements (Zaid et al., 

2020). 

The spectra acquired from VIS/NIR spectroscopy need to be analyzed to extract 
useful information. Statistical methods, known as multivariate data analysis 

(MVDA), are usually used to analyze spectra signals (Abu-Khalaf & Hmidat, 

2020). Principal component analysis (PCA) (Asitok et al., 2020), partial least 
squares (PLS) (He et al., 2005; Mudalal, 2020), linear discrimination analysis 

(LDA) (Wang et al., 2015) are important methods of analysis using MVDA. The 

PCA is a linear prediction method, which is applied to distinguish between 
samples. It consists of several principal components (PCs), the first PC has the 

most amount of information and the second follows and the latter PC carries the 

least amount of information (Farres et al., 2019). 
The VIS/NIR technique has been tested in disease detection in several previous 

studies (Abu-Khalaf, 2015; Hahn, 2009; Liaghat et al., 2014). For example, 

Bienkowski et al. (2019) investigated the ability of VIS/NIR spectroscopy (400-

1000 nm) to detect late blight disease on potato plants and they could build a 

PCA model with an accuracy of 92% to distinguish between infected and healthy 

samples. Also, the VIS/NIR technology was used for a wavelength of 400-2500 
nm to determine Aspergillus spp. on peanut leaf, and the results showed the 

ability of this technique to separate infected and uninfected samples using the 

LDA model with an accuracy of 86.4% of the variance (Shen et al., 2018). 
To our best knowledge, there are no previous studies on the use of VIS/NIR 

spectroscopy (550-1100 nm) for detecting the gray mold caused by B. cinerea on 

tomato fruits. Therefore, this study aims to investigate the ability of VIS/NIR 
spectroscopy with a range of 550-1100 nm to detect B. cinerea fungus in tomato 

fruit at an early stage of infection. 

 

MATERIAL AND METHODS 

 

Isolation and identification of B. cinerea fungus 

 

The B. cinerea fungus was isolated from infected tomato samples obtained from 

farms near Tulkarm, Palestine, and it was cultivated on potato dextrose agar 
(PDA). Several repeated isolates were made to obtain a pure sample of the 

fungus. After that, the plates were incubated for 14 days at 21±1°C for full 
growth (Dean et al., 2012). The fungus was identified morphologically based on 

the spore’s shape and conidia’s color using a light microscope. For this reason, a 

small piece of fungus was taken after 14 days of growth to prepare a microscopic 
slide and observed by a light microscope (Labomed, USA) (cat # PN: 9135000-

901) (Williamson et al., 2007).  
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Molecular identification of B. cinerea  

 

A Dneasy plant mini kit (Qiagen, Germany) was used for fungus DNA 

extraction. Almost 100-150 mg of freshly isolated B. cinerea fungus were 
scraped and placed in a 1.5 ml tube. The tube's content was grinned by pellet 

pestles cordless motor (Sigma-Aldrich, Z359971-1EA, Germany) with 400 µl 

lysis buffer and about 4 µl Rnase. Then the tubes were placed in a water bath at 
65°C for about 10 min. After that, it was put in ice for 5 min after adding 

approximately 130 µl of neutralization buffer. Afterwards, the tubes were 

centrifuged for 5 min on 14,000 rpm, then the supernatant was transferred to a 
new tube and added 1.5 of the transferred volume from the washing buffer. Then 

about 650 µl was transferred to a 2 ml collection tube and the content was 
centrifuged at 8,000 rpm for 60 sec. After that, 100-150 µl of elution buffer was 

added, and the tubes were left at room temperature for 10 min. The total DNA 

was checked by gel electrophoresis (Rigotti et al., 2002). The C729+/- (forward: 
AGCTCGAGAGAGATCTCTGA) and (reverse: 

CTGCAATGTTCTGCGTGGAA) specific primer set was used to produce 700-

750 bp in B. cinerea species (You et al., 2019). Besides, BC108F/BC563R 
(forward: ACCCGCACCTAATTCGTCAAC) and (reverse: 

CTGCAATGTTCTGCGTGGAA) primer pair was used to amplify 600 bp of 

DNA fragment for B. cinerea species (Fan et al., 2015). PCR was achieved in a 
25 µl reaction mixture for each primer set. The mixture contains 12.5 µl of 2X 

GoTaqVR Green Master Mix (Promega Corporation, USA), 0.5 µl forward 

primer, 0.5 µl reverse primer, 1 µl fungal DNA and 10.5 µl DNase free water 
(Biological Industries, USA). The DNA amplifications were done using a thermal 

cycler (VertiTM 96, Applied Biosystems Company, USA), based on the following 

program, the denaturation cycle for 2 min at 95°C, then 35 cycles of 45 sec at 
94°C, the annealing step at 55°C for 50 sec and 72°C for 50 sec, also for the final 

cycle the temperature was 72°C for 5 min (Gindro et al., 2005; Rigotti et al., 

2006). 

 

Tomato samples 

 
Homogeneous and defects free tomato samples were collected from a farm in 

Tulkarm, Palestine. The samples were grown in optimal conditions in a 

greenhouse and were mature, suitable and ready to be sent to the local market. A 
total of 90 samples were obtained from three local varieties, which are Harver, 

Izmer and Ekram 30 samples per cultivar. 

 

Prepare a B. cinerea suspension 

 

According to Petrasch et al. (2019) protocol, a solution of B. cinerea fungus 
isolated after 14 days of growth was prepared by harvesting the spore using 

KH2PO4- glucose solution, which consists of 0.5 g of KH2PO4 (10 mM), 0.4 g of 

glucose (10 mM) and 125 µl of Tween-80 for 250 ml. The concentration of spore 
suspension was set under the light microscope to reach 5*104 spore per ml using 

the hematocytometer.  

 

Sterilization and injection of tomato samples by B. cinerea suspension  

 

Tomato samples were sterilized with a 2% sodium hypochlorite (NaOCl) 
solution, then washed with sterile distilled water and left to dry for an hour at 

room temperature 25±1°C (Zhang et al., 2014). Then 20 samples of each variety 

were injected with a fungus solution with a 10 µl of four areas around the neck 

region and 10 samples were left as a control and injected with a 0.05% KH2PO4
- 

glucose and tween 80 solution. After that, all samples were left at room 

temperature 25±1°C with plastic boxes (Borges et al., 2014). 

 

VIS/NIR spectroscopy 

 
Spectra were taken from the zero-day to the second day of injection, using the 

VIS/NIR spectroscopy with USB2000+ (Ocean Optics, USA). An optical fiber 

with 50 µm was used for connecting the reflectance vivo light through the 
samples. All data for the three days were recorded using Spectra Suite Software 

(Ocean Optics, USA). The integration time was 260 µs for all days. The spectra 
acquired by reflectance mode recorded as absorbance log (1/R). To ensure the 

stability in spectra a reflectance standard (Ocean Optics, USA) was used every 10 

minutes. Each sample is tested three times to confirm the spectra required. 

 

Data collection 

 
The data were collected using the Excel program (Microsoft office, 2013) and an 

average of 3 spectra per sample was calculated. After that, the data was analyzed 

using the Unscrambler (version 10.3, Camo Software AS, Oslo, Norway).  

 

Data preprocessing and analysis 

 
Savitzky-Golay (SG) smoothing to remove the spectra noise (Geladi et al., 1985) 

and the first derivative (1st D) to increase spectrum resolution (Savitzky & 

Golay, 1964) were applied for raw spectra. Principal component analysis (PCA) 

with test set validation  was carried out for the spectra of samples during 
experiment days (i.e. zero-day, first day and second day of inoculation) to 

distinguish between healthy and infected samples using VIS/NIR region with a 

range of 550-1100 nm. Where the measured samples were divided into 70 
samples for calibration set and 20 samples for the validation set. 

 

RESULTS AND DISCUSSION  

 

Identification of B. cinerea 

 
When identifying B. cinerea fungus morphologically, it was found that the 

obtained results are similar to those reached by Elad and Shtienberg (1995) and 
by Sharma and Pandey (2010) for B. cinerea identifying morphologically. 

Figure 1 shows the shape of fungal spores under the light microscope, also 

showing the conidia color of B. cinerea on PDA media. 
The result of the PCR (700 bp) was also produced with a specific primer set 

C729+/- from isolated B. cinerea DNA. Moreover, 600 bp was produced by 

BC108F/BC563R specific primer pair confirmed that the isolated fungus was B. 
cinerea. These results are in agreement with the results reported by Rigotti et al. 

(2002) and by You et al. (2019) for using these primer sets to identify B. cinerea 

fungus. Figure 2 shows the PCR products. 
 

 
Figure 1 Morphological features of B. cinerea fungus cultured on PDA media for 
two weeks. A: pure fungal conidia grown on PDA media. B: fungal spores shape 

under a light microscope with an oil lens. 

 

 
Figure 2 PCR product of B. cinerea DNA fungus with two specific primer pairs. 
Lane 1: Lane specific primer set C729+/C729-. Lane 2: negative sample. Lane 3: 

specific primer set BC108+/BC563-. Lane 4: negative sample. M: 100 bp DNA 

marker ready to use (RTU). 
 

Spectral characterization  

 
The spectra were carried out for representative infected samples for all days (i.e. 

zero-day, the first day and second day of inoculation). When internal changes 

occur as a result of the presence of the pathogen, the acquired spectra of the 
infected samples will be different from the healthy ones, which confirms that the 

VIS/NIR technique works as a fingerprint (Mahlein et al., 2010; Qu et al., 

2015). This is what was observed when comparing between the measured spectra 
from the infected samples for all days, where there was no significant difference 

between the spectra of zero-day and the first day of injection, while there was a 

clear difference between the spectra of the first day and second day as shown in 
Figure 3. These results seem to be consistent with those published by Shen et al. 

(2018) and Wu et al. (2008) which found that the spectra acquired from the 

infected sample differ from the healthy one. 
After 1st D was carried out for representative spectra for infected samples as 

shown in Figure 4, the highest bands (i.e. peaks at 787, 948, 955 and 1081 nm) in 

NIR region are likely the result of the high content of water (O-H) (Rizk, 2018), 
while the highest band (560 nm) in VIS region is due to the presence of dyes 

(chlorophylls and carotenoids) and the lowest band (983 nm) in the second day of 
inoculation due to the consumption of carbohydrates (C-H) and proteins (N-H) 
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by the fungus, a similar to that described by Flores et al. (2009) for tomato and by Shen et al. (2019) for wheat. 

 
Figure 3 A representative VIS/NIR (550-1100 nm) spectral curve, with Savitzky-Golay (SG) smoothing effect, obtained from infected tomato 

samples. Zero-day (blue), the first day (red), the second day (green) of inoculation with gray mold. 

 
Figure 4 The effect of the first derivative (1st. D) on the spectra obtained from the VIS/NIR region for infected samples. Zero-day (blue), the first 

day (red), the second day (green) of inoculation with gray mold. 

 

Principal component analysis (PCA) model 

 
PCA model with test set validation has been established for the average spectra 

of all samples during tested days. In the zero-day of injection, the PCA model 

was unable to separate infected and healthy samples as shown in Figure 5A and 
B. Where two PCs explained 83% and 82% of the total variance for calibration 

and validation set, respectively. While in the first day of injection, the PCA was 

able to distinguish between infected and healthy samples, with some overlapping, 
as shown in Figure 5C and D. Where two PCs explained 77% and 90% of the 

total variance for calibration and validation set, respectively. In the second day of 

injection, i.e. after 48 h, the PCA was able to fully classify between infected and 
healthy samples with two PCs explained 99% and 100% of the total variance for 

calibration and validation set, respectively (Figure 6 and Figure 7). 

Notwithstanding that the symptoms were not obvious with the naked eye at this 

stage.  
The results showed the ability of VIS/NIR with a range of 550-1100 nm to 

discriminate the infected tomatoes from the no infected ones at the early stages of 

the gray mold disease. These results are in arrangement with several previous 
studies. Where Moscetti et al. (2015) investigated the ability of VIS/NIR 

spectroscopy with a range of 400-2500 nm to sense bactrocera olea that infested 

olive fruit and they could build a PCA model that explained 98% of the total 
variance for distinguishing between infected and healthy samples. In addition, 

Wu et al. (2008) tested the ability of VIS/NIR with a range of 400-1100 nm to 

sense B. cinerea fungus on eggplant leaves and could build a PCA model with an 
accuracy of 85% to classify the infected and healthy samples. 
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Figure 5 PCA model based on VIS/NIR (550-1100 nm) spectra. A. PCA model for calibration set (70 samples) for zero-day of inoculation 

with gray mold. Two PCs explained 83% of the total variance. B. PCA model for validation set (20 samples) for zero-day of inoculation 
with gray mold. Two PCs explained 82% of the total variance. C. PCA model for calibration set (70 samples) for the first-day of 

inoculation with gray mold. Two PCs explained 77% of the total variance. D. PCA model for validation set (20 samples) for the first day 

of inoculation with gray mold. Two PCs explained 90% of the total variance. 
 

 

 
Figure 6 PCA model calibration set (70 samples) based on VIS/NIR (550-1100 

nm) spectra for the second day of inoculation with gray mold. Two PCs 
explained 99% of the total variance . 

 

 
Figure 7 PCA model validation set (20 samples) based on VIS/NIR (550-1100 

nm) spectra for the second day  of inoculation with gray mold. Two PCs 
explained 100% of the total variance. 

 

CONCLUSION  

 

The two primer sets (C729+/- and BC108+/BC563-) showed a high performance 

to identify B. cinerea fungus using the PCR method. Also, the PCA results 
showed the ability of VIS/NIR spectroscopy (550-1100 nm) to detect B. cinerea 

fungus on infected tomato fruit at an early stage. Furthermore, the result opens 

the way to use non-destructive portable VIS/NIR spectroscopy in food industries, 
as well as it can be used in the field and packaging houses to detect latent 

infection also to prevent the pathogen infection, and this can increase the safety 

of the products and reduce the economic losses. Further research is needed with 
other varieties and also demonstrate specificity with other pathogens. 
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