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INTRODUCTION 

 

Dynamic application of enzymes in industrial processes has consequentially led 
to search for thermophilic fungi as they serve as a potential source of 

thermophilic enzymes such as lipolytic, proteolytic, cellulolytic, lignolytic and 
amylolytic enzymes which are used in the industries. Applications of these 

enzymes have found their ways in numerous industries such as; detergent, 

chemical, oil, food, brewing, pharmaceutical, leather, paper, dye and textile 
industries (Gomes and Steiner, 2004; Chrisnasari et al., 2018; Gulmus and 

Gormez, 2020). Enzymes produced by these thermophiles are thermostable, 

extreme pH tolerant and also possess high activity at other extreme 
environmental or industrial conditions (Ahirwar et al., 2017; Gulmus and 

Gormez, 2020).  

Thermophiles are ubiquitously present in the environment, a number of them are 
found in industrial effluent, aquatic sediments, sludge, wood chip piles, composts 

site and other accrued organic matter that provides favorable conditions (warm, 

humid, and aerobic) for their growth (Lee et al., 2014; Ahirwar et al., 2017). 
Most enzymes obtained from thermophilic fungi often exhibit higher 

temperatures tolerance than those produced and extracted from mesophilic fungi. 

Some of these thermostable enzymes are stable between 50 to 80OC (Lee et al., 

2014), any temperature below 20°C has inhibited the activity and growth of true 

thermophilic fungi (Maheshwari et al., 2000; Ahirwar et al., 2017). Several 

thermophilic fungi have also been isolated from environments associated with 

harsh conditions like high water pressure, absence of oxygen, high salinity and 

aridity (Lee et al., 2014). Research has shown that many thermophilic organisms 

were mostly isolated from composts: prevalence of these microbes in compost 
sites is owing to their  extreme temperatures, aerobic and humidity conditions 

present in the compost. In addition, compost also serve as a source of nutrients 

for the development of microorganism (Lee et al., 2014).  
During metabolic activities of fungi found on composts, various organic 

materials are broken down to smaller organic molecules. The overall process of 

metabolism is made possible through the thermophilic fungi ability to secrete 
numerous enzymes capable of degrading composts (Raut et al., 2008). The 

thermophilic enzymes evaluated  in this study are proteases, cellulases and 

lipases. These are largely required in the food industry to reduce time, energy and 

cost of operation (Raveendran et al., 2018). Proteases are known to catalyze 
peptide bonds in proteins through hydrolysis  and thus they  are used in brewing, 

meat tenderization and for milk coagulation (Patel et al., 2013). Proteases have 
also been used in improving food digestion, flavour and nutritional value as well 

as aiding emulsification and coagulation processes (Aruna et al., 2014). 

Cellulases act on cellulose and hydrolyze β-1,4 linkages found in carbohydrates 
to release glucose subunits. Classes of cellulases include endo-(1,4)-β-d-

glucanase (EC 3.2.1.4), exo-(1,4)-β-d-glucanase (EC 3.2.1.91) and β-

glucosidases (EC 3.3.1.21) (Schülein, 1988). Fungi cellulases are used to 
increase yield, performance, clarification and improve stabilization in juices 

production processes (Dervilly et al., 2002). In addition, they are also utilized in 

the extraction of important phytochemicals such as phenolic and flavonoids from 
flowers, seeds and fruits (Kabir et al., 2015), while lipases hydrolyze long-chain 

of triglycerides. These enzymes are used in improving cheese texture, the flavour 

development in butter, the aroma in beverages alongside increasing the shelf life 
of baked products (Aravindan et al., 2007). Based on the commercial benefits of 

these enzymes, there is need to search for thermophiles that can produce 

thermophilic and thermostable enzymes that will be highly stable and resistant to 
product inhibition during these production processes (Arora et al., 2015; 

Mallerman et al., 2015). Hence, in the present study, we isolated and screened 

thermophiles (fungi) potentially producing  extremophilic lipases, cellulases and 

proteases, for future biotechnological applications. 

 

MATERIAL AND METHODS 

 

Collection of samples  

 
Samples were collected from three different composts site (palm oil mill, wood 

chip piles and abattoir wastes dumping piles) of Oye-Ekiti, Ekiti State, Nigeria.. 

The samples were obtained from the piles at a depth of 1 meter using a shovel 
and then transported to the laboratory in  sterile polythene bags within 2 hours 
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from the  collection for microbiological  and biochemical study (Alsohaili and 

Bani-Hasan, 2018).  

 

Screening and isolation of thermophilic fungi  

 

The thermophiles were isolated by taking 1 g of different samples of soil and 

suspending them in 5 mL of sterile distilled water. These were vigorously 
vortexed and subsequently placed in the water bath for 24 hours at 70 oC. Then 

0.5 mL of the liquid were inoculated into flasks containing 100 mL of  broth (4 

g/L yeast extract, 20 g/L glucose, 1.0 g/L K2HPO4, 0.5 g/L MgSO4 ·7H2O, pH 
7.0 ± 0.2) and then kept in shaking incubator for other 72 hours at 50OC. After 72 

hours, 200 µl samples  were taken and inoculated separately on Potato Dextrose 
Agar (PDA) containing 1% streptomycin. The plates were incubated at 50OC in 

the dark for 7 days and then  colonies observed as described in (Gaddeyya et al., 

2012; Reddy et al., 2014; Alsohaili and Bani-Hasan, 2018).  

 

Screening for thermophilic enzymes  

 

(i)   plate screening for lipases 

The fungi isolated from palm oil mill compost site were screened for lipase 

production by inoculation on phenol red olive oil agar plates containing 0.01% 
(w/v) phenol red, 0.1% (w/v) CaCl2, 1% (v/v) olive oil, 2% (w/v) agar, 1% (w/v) 

streptomycin; the pH was adjusted to 8.0 using 0.1 N NaOH. The plates were 

later incubated at 50OC for 5 days (Rai et al., 2014).  

(ii)  plate screening for cellulases 

For this screening the thermophiles obtained from wood chip compost piles, were 

used. The ability of the isolates to secrete cellulase was tested using Czapek agar 
plate containing 1 g/L carboxymethylcellulose (CMC); 0.5 g/L NaNO3; 1 g/L 

K2HPO4; 0.5 g/L MgSO4∙7H2O; 0.001 g/L FeSO4∙7H2O; 1 g/L yeast extract; 15 

g/L agar) for 5 days at 50OC. The pH was regulated to 5.0. Fungi showing 
colonies with clear haloes were considered to be positive cellulase producers 

(Kasana et al., 2008). 

(iii) plate screening for proteases 

The fungi obtained from abattoir wastes dump site were screened for protease 

activity on agar medium comprising of 10 g/L casein and 20 g/L agar at pH 8.0. 

The inoculated plates were incubated for 5 days at 50OC before observing haloes 
of hydrolysis (de Veras et al., 2018). 

 

Production of thermophilic enzymes  

 

For enzymes production fungi were inoculated in 250 mL Erlenmeyer flask 

containing 100 mL of the media described below. 

(i)   lipase production 

The basal medium for lipase production consist of 0.1% yeast extract, 0.3% 

peptone, 0.05% CaCl2.2H2O , 0.05% NaCl,  1% olive oil and , 0.02% 
streptomycin; , pH was adjusted at 8.0 (Ayinla et al., 2017).   

(ii)  celullase production 

Cellulase production in shaking flasks was carried out using Mandels and 

Weber (1969) medium, supplemented with 1% CMC and 2.5% wheat bran. The 

medium also consist of 0.2% KH2PO4 , 0.03% CaCl2·2H2O,  0.03% urea, 0.03% 

MgSO4·7H2O, 0.14% (NH4)2SO4, 0.025% peptone, 0.01% yeast extract, 1 mL 
Tween-80, 0.005% FeSO4·7H2O, 0.0016% MnSO4·H2O, 0.0014% ZnSO4·7H2O, 

and  0.002% CoCl2·6H2O, pH 5.0 in 250 mL Erlenmeyer flask (Saroj et al., 

2018). 

(iii)  protease production 

Submerged fermentation medium for protease production include the following : 

1% of casein, 2.5% wheat bran, 0.1% (w/v) of each of (NH4)2SO4, MgSO4.7H2O 
and NH4NO3, to pH 8.0 in 250 mL Erlenmeyer flasks (Macchione et al., 2008).  

Each medium was inoculated with a loopful of actively growing fungal colonies 

obtained from plates. Inoculated media were placed in a shaking bath and 
incubated at 50OC and with a constant oscillation of 160 rpm. After 10 days , the 

supernatants were obtained by centrifugation at 5,000 rpm for 15 min at 4OC and 

filtered through Whatman no. 1 filter paper before determine their respective 
enzymatic extracellular activities (Ayinla et al., 2017). The protein contents of all 

the analyzed supernatants (crude enzyme) were also  estimated using Bradford 
assay (Bradford, 1976). 

 

Measurement of enzyme activity  

 

(i)   assay for lipase 

Lipase activity was assayed using Yadav et al. (1993) method with olive oil as 
substrate. Olive oil (5 mL) was vigorously mixed with 0.1 M phosphate buffer 

(20 mL) and pre-incubated for 10 min at 37OC.. The reaction was then activated 

by the addition of 1 mL crude enzymes and the mixture incubated for 30 min at 
40OC. The reaction was finally terminated by the addition of 15 mLacetone-

ethanol (1:1). Free fatty acids released during the reaction were then titrated with 

0.05 N NaOH after the addition of three drops of phenolphthalein indicator. One 
unit of lipase activity was defined as the amount of enzyme which produces 

1μmol of fatty acids per minute under assay conditions (Lanka and Trinkle, 

2017). 

(ii)   assay for cellulase 

Carboxymethyl cellulase (CMCase) was performed according to Ghose (1987) 

method. The assay was carried out at 50OC with a reaction mixture containing 0.5 

mL crude enzyme and 0.5 mL of 2% substrate (CMC) dissolved in 50 mM 
sodium citrate buffer (pH 4.8) and incubated for 30 min. After incubation, 3 mL 

of DNS (3,5-dinitrosalicylic acid) reagent was added; the mixture was heated for 

5 min in boiling water to obtain a coloured reaction mixture and the absorbance 
measured at 540 nm. One unit of cellulose activity was defined as the amount of 

enzyme required to liberate 1 µmol of glucose from the appropriate substrate per 

mL per min under the assay conditions (Saroj et al., 2018). 

(iii)  assay for protease 

Protease activity was determined using Carrie Cupp-Enyard (2008) method. 
This assay utilizes casein as a substrate where 5 mL of 0.65% casein solution was 

incubated for 5 min at 37OC. The reaction was then activated by the addition of 1 

mL of crude enzyme solution before heating in water bath for 30 min at 37OC. 
The reaction mixture was terminated by the addition of 5 mL of Trichloroacetic 

acid (TCA) solution and filtered using Whatmann No 1 filter paper., 5 mL of 

sodium carbonate and 1 mL of 2 fold diluted Follin Ciocalteus phenol reagent 
were added to the filtrate before incubating in dark for 30 min at room 

temperature for the development of blue colour. The absorbance was measured at 

660 nm against a reagent blank using tyrosine standard. One protease unit was 
defined as the amount of enzyme that releases 1 μM of tyrosine per minute at pH 

7.5 at 37OC (Mohapatra et al., 2003; Chandrasekaran et al., 2015). 

 

All the experiments were done in triplicates and values are expressed as mean ± 

SEM (n=3). Statistical analysis was performed using a one-way analysis of 

variance (ANOVA) followed by Tukey's post hoc test. 
 

Microscopic examination of isolated fungi  

 
The three fungal isolates from different sources and having the highest enzymatic 

activities were evaluated for their fungal morphology by observing the colony 

features (colour, shape, size and hyphae) by a compound microscope Harris 
HNB-107BN with a digital micro camera MC-D20DU using a lactophenol cotton 

blue-stained slide mounted with a small portion of the mycelium at 40X 

magnification (Gaddeyya et al., 2012; Alsohaili and Bani-Hasan, 2018). 

 

RESULTS AND DISCUSSION 

  

Screenings of fungal isolate for enzymatic activities 

 

The thermophilic fungi were isolated from different compost wastes sites namely; 
palm oil mill, wood chip piles and abattoir wastes dump site at a  temperature of 

40, 40 and 45OC respectively at a depth of one meter. All samples were treated at 

the  high temperature of 70OC before culturing. All strains were then screened 
according to the potential enzymatic activity that could occur at the site of sample 

collection. Thus, the isolate obtained from the palm oil mill, wood chips pills and 

abattoir dump site were screened for lipase, cellulase and protease activities 
respectively (Figure 1). The subjection of environmental samples to the  high 

temperature of 70OC was used to remove all non-thermophilic microorganisms 

that were present at the various sites of screening. The rise in temperature has 
been known to suppress the growth of mesophilic fungi leaving the thermophilic 

and thermotolerant that are capable of living in environment with high 

temperatures and thus secreting thermophilic enzymes such as lipases, cellulases 

and proteases. These enzymes have high potentials in many industrial process 

(Moretti et al., 2012). 

 
Figure 1 Thermophilic fungi isolates screen for enzymatic activities show zones 
of hydrolysis. A. Lipase Activity; B. Cellulase Activity; and C. Protease Activity  

 

Quantitative enzyme activity  

 

The enzymatic analyses were carried out on supernatants after growing newly 

isolated fungi in Erlenmeyer flask incubated at 50 OC. The culture filtrates were 
used for quantitative estimation of enzymes activities; results are  shown in 

Tables 1-3. 
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Table 1 showed the lipolytic activities of isolates obtained from palm oil mill 
site; isolate 3 A had the most proficient lipase activity (56.562 U/mL) and isolate 

2A had the least activity (41.487 U/mL).  

Table 2 showed that four of the five isolates obtained from the wood chip piles 
had high cellulolytic activity at the end of 10 days incubation period. The 

cellulase activities of newly isolated thermphilic starins  range from 38.352 U/mL 
(isolate 3A) to 3.503 U/mL (isolate 1A)  

Table 3 showed the proteases activities of isolated thermophiles from abattoir 

dump site which ranges from 2.054 – 3.003 U/mL. isolate 2 B and 3 C had the 
highest and lowest protease activities respectively. 

 

Table 1 Protein concentration and enzymes activities of lipases in culture filtrate  

 

Samples Site 
Isolates 

Protein Concentration 

(mg/mL) 

Fatty Acid  Released 

(µg/mL) 

Enzyme Activity 

(U/mL) 

 

Palm Oil Mill 

1 A 0.563±0.008 1375.474±0.063 45.253±0.033 

2 A 1.719±0.012 1244.343±0.034 41.482±0.027 

2 D 0.796±0.005 1538.464±0.048 51.281±0.035 

3 A 0.039±0.003 1.696.831±0.028 56.562±0.018 

The experiment was performed in triplicates. Values are expressed as mean ± SEM (n=3). Statistical analysis was 

performed using a one-way analysis of variance (ANOVA) followed by Tukey's post hoc test. Results were considered 
statistically significant at p≤0.05. 

 

Table 2 Protein concentration and enzymes activities of cellulases in culture filtrate 

Samples Site Isolates 
Protein Concentration 

(mg/mL) 

Enzyme Unit 

(µM) 

Enzyme Activity 

(U/mL) 

 
Wood Chip Piles 

1 A 0.489±0.033 105.011±0.023 3.503±0.021 

3 A 0.622±0.022 1150.522±0.028 38.352±0.018 

4 A 0.429±0.020 375.011±0.021 12.501±0.031 

7 A 0.571±0.012 392.501±0.013 13.084±0.042 

7 B 0.616±0.028 457.028±0.016 15.233±0.023 

The experiment was performed in triplicates. Values are expressed as mean ± SEM (n=3). Statistical analysis was 

performed using a one-way analysis of variance (ANOVA) followed by Tukey's post hoc test. Results were considered 
statistically significant at p≤0.05. 

 

Table 3 Protein concentration and enzymes activities of proteases in culture filtrate 

 

Samples Site 

 

Isolates 

Protein Concentration 

(mg/mL) 

Enzyme Unit  

(µM) 

Enzyme Activity  

(U/mL) 

 
Abattoir Dump Site 

2 A 0.852±0.013 6.163±0.028 2.054±0.018 

2 B 0.369±0.008 9.014±0.021 3.003±0.009 

2 C 0.537±0.011 6.474±0.013 2.162±0.012 

3 C 0.298±0.009 6.233±0.018 2.081±0.013 

The experiment was performed in triplicates. Values are expressed as mean ± SEM (n=3). Statistical analysis was performed using a one-way 

analysis of variance (ANOVA) followed by Tukey's post hoc test. Results were considered statistically significant at p≤0.05. 

 

Microscopic and morphological identification of fungi isolates 

 
Microscopic and morphological identification were carried on fungi isolates with 

the highest enzymatic activities (Figure 2). Lipases producing isolate 3A obtained 

from the palm oil mill (Figure 2A) indicated the presence of dark colonies with 
root-like rhizoids and branching hyphae and identified as Rhizopus sp. The 

cellulases producing isolate 3A obtained from wood chip piles (Figure 2B) 

indicated massive mycelium with narrow branched hyphae and yellowish green 
spores and identified as Aspergillus flavus. The proteases producing isolate 2B 

obtained from abattoir wastes dumping site (Figure 2C) showed widely spread 

colonies with yellowish brown and darkened annular structures and identified as 
Neurospora sp.  

The 3 fungal strains presently isolated in this work corroborate the results 

obtained by Maheshwari et al. (2000) who reported that few species of 
thermophiles have been identified and described out of 75,000 known fungi. 

After qualitative tests performed on plates, the quantitative enzymatic tests that 

were also conducted using the supernatants obtained from the liquid cultures in 
aerated Erlenmeyer flasks, corroborate that these strains are efficient producers of 

thermophilic enzymes. 

Previous studies showed that that aerated shake flask cultures compared to static 
cultures are essential for the production of enzymes with high activity (Papagora 

et al., 2013). Salleh et al. (1993), Essamri et al. (1998) and Mukhtar et al. 

(2016) reported that Rhizopus oryzae are excellent producer of high activity 
lipase . This corroborate our microscopic analysis showing that of the isolate with 

the highest lipase activity was  Rhizopus sp. Aspergillus flavus was identified as 

the isolate with the highest cellulolytic activity, confirming results obtained by 
Chandra et al. (2007) who found that secreted cellulolytic enzymes from 

Aspergillus flavus are responsible for the degradation of cellulosic material. 

Furthermore, the extracellular production of proteases by isolates obtained from 

abattoir wastes dump site showed growth and enzyme production at pH 8.0 and 

50 OC. This result is similar with what was obtained from Thermomyces 

lanuginose P134 (Li et al., 1997) and Tritirachium albumlimber (Samal et al., 

1991) that also grew optimally at 50 OC as Neurospora sp. obtained from this 

study. 

Microscopic analysis allowed the identification of the thermophilic isolates with 
the highest enzymatic activities. Screening for thermophiles at a depth of 1 meter 

below ground surface facilitated obtaining viable isolates, however the 

temperature and moisture content obtained at this depth was assumed be adequate 

enough for their survival and optimum growth (Rajasekaran and Maheshwari, 

1993; Pedersen, 2000). 

 
Figure 2 Microscopic and morphological analyzes of thermophilic fungi with the 

highest enzymatic activities. [A] Rhizopus sp. from isolate 3A obtained from 

palm oil mill; [B] Aspergillus flavus from isolate 3A obtained from wood chip 
piles; [C] Neurospora sp. from isolate 2B obtained from abattoir dumping site. 

 

CONCLUSION 

 

Enzymes are liable to denaturation at high temperature thereby causing inhibition 

of growth and other metabolic activities in microorganism (Pundir et al., 2012). 
Thus, the need for desired good level of activity and enhanced stability at higher 

temperature are factors to be considered for enzyme selection (Moretti et al., 

2012). This study therefore allowed the isolation and identification of 
thermophilic fungi (Rhizopus sp., Aspergillus flavus and Neurospora sp.) that can 

withstand high temperature alongside producing thermostable enzymes with 

highly significant activities. The obtained result indicate that all the isolates are 
potent producer of extracellular thermophilic hydrolytic enzymes (lipase, 



J Microbiol Biotech Food Sci / Ibraheem et al. 2021 : 11 (2) e3537 

 

 

  
4 

 

  

cellulase and protease) working at a temperature of 50 OC. This evidence 
suggests that these thermophilic fungi could be of great advantage in various 

industrial processes. Thus, more further studies are needed for the biochemical 

and molecular characterization of these isolates to strengthen our understanding 
of their metabolic activities. Detailed knowledge of the catalytic and biophysical 

properties of these thermophilic enzymes are very critical towards bioengineering 

of these isolates to withstand extreme industrial processes or environmental 
conditions. 
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