OPTIMIZING THE PRODUCTION OF PECTINASE OF ORANGE PEEL WASTE BY PENICILLIUM CHRYSOGENUM MF318506 USING RESPONSE SURFACE METHODOLOGY IN SUBMERGED FERMENTATION

Nehad E. Ahmed and Hassan M. Awad*

Address(es): Prof. Dr. Hassan M. Awad, Chemistry of Natural and Microbial product Dept., Pharmaceutical and Drug Industries Research Div., National Research Centre, El-Bohout Street, Dokki, P.O.12622, Giza, Egypt.

*Corresponding author: awadmhassan@yahoo.com

ABSTRACT

Pectinases find wide application in different industrial applications, e.g., textile, food, tea, paper and pulp, vegetable oil extractions, saccharification of agricultural remains, and in fermented drinks. Three fungal strains were screened for pectinase production. Results indicated that all strains are capable of producing a pectinase enzyme. Penicillium chrysogenum MF318506 showed the highest pectinase activity (0.214 U/ml) on the recommended medium at 30 °C at 150 rpm, on 6 days. Different agricultural wastes (orange peel, banana peel, potato peel, pomegranate peel, wheat bran, and rice bran) were screened as a carbon source. The maximum pectinase activity of 0.48U/ml was obtained from Orange peel and was selected for further studies. Screening of important medium components for pectinase production by the Plackett-Burman design (PBD) showed that the maximum pectinase activity of 1.057 U/ml was achieved with 3 % orange peel, 2.0 g/l (NH₄)₂SO₄, 6.0 g/l peptone, 0.6 g/l KH₂PO₄, 0.6 g/l K₂HPO₄, 0.1 g/l MgSO₄·7H₂O, 0.5 g/l KCl and 0.1 g/l FeSO₄. Finally, the Box-Behnken design (BBD) which uses the response surface methodology (RSM) was applied to further optimization of the selected factors using the PBD. The maximum pectinase activity of 1.292U/ml was observed at 2.5% orange peel and 4.5 g/l peptone. The Statistical optimization, enhanced the pectinase production by 6.04 folds using Orange peel waste as a substrate. The pectinase produced by Penicillium chrysogenum MF318506 has potential applications in different industrial fields.

Keywords: Statistical Design optimization, pectinase production, Penicillium chrysogenum, orange peel waste

INTRODUCTION

Pectinases are a cluster of enzymes that catalyze the breakdown of pectin-holding substrates. Pectinases are classified into polygalacturonase (EC 3.2.1.15), pectinesterase (EC 3.1.1.11), pectin lyase (EC 4.2.2.10), and pectate lyase (EC 4.2.2.2) constructed on their activity. Pectinase (EC 3.2.1.15) is an enzyme that breaks down pectin in plant materials and which hydrolyzes polygalacturonic acid hooked on monogalacturonic acid by opening the glycosidic bonds and contravention ester bonds amongst carboxyl and methyl groups (Saranraj and Naidu 2014). Since pectinase is one of the greatest vital industrialized enzymes, Pectinases find a widespread request in the arena of cloth trades, nutrition productions, tea trades, paper, and soft tissue commerce, plant oil, saccharification of agricultural remains, and in fermented drinks (Chen et al. 2012; Praveen and Suneetha 2014).

Plants and microorganisms are the main enzyme production sources, but the microbial sources are considered more promising from both methodological and commercial point of view (Anisha and Girish 2014). Esmail et al. (2013) mentioned that Bacillus sp., Erwinia sp., and Pseudomonas sp. are the main creators of pectinases. As well as, pectinase produced from fungi like Aspergillus, Rhizopus, and Penicillium (Murudula et al. 2011). More recently, pectin lyase was obtained by Penicillium (P) expansum RSWSEP1 using agricultural wastes (Atalla et al. 2019). A large number of bacterial strains, mainly Bacillus sp. (Kuvvet et al. 2017) and many filamentous fungi such as A. niger, A. oryzae, A. awamori, A. sojae, T. viridiae, T. virens, P. griseoroseum, and Phanerochaete chrysosporium are potential pectinase producers (Ruiz et al. 2012; Tari et al. 2007; Teixeira et al. 2011; Benoit et al. 2012; Heerdt et al. 2012). Owing to the extensive uses of this enzyme, it is essential to use low-cost and willingly obtainable raw material for its construction. Employment of inexpensive carbon sources such as fruit handling waste, several lignocellulosic resources, wheat bran, soybean, sugar cane molasses, and agro-industrialized wastelands, especially from citrus fruits brans and straws, etc. can help increase enzyme productivity at a low cost (Ruiz et al. 2012; Martin et al. 2004; Martin et al. 2010; Demir and Tari 2014).

The enzymes acquired from the microbes are usually extracellular and their yield as well as the cost is extremely exaggerated by the medium components and cultivation conditions (Awad et al. 2014; Hamed et al. 2015; Atalla, et al. 2020). So, the improvement of an economically sustainable production medium needs the choice of procedure factors and their optimization approaches. The conventional method for optimal conditions of enzyme production is time waste and a daunting assignment of changing one factor at a time whereas keeping others at constant levels. An alternate and more actual method is the use of statistical analysis.

The scheming a real production medium for maximal enzyme yield is a vital procedure as the medium structure can significantly affect the enzyme activity (Ahmed et al. 2015; Djekrif- Dakhmouche et al. 2006). Plackett-Burman (PB) design has been successfully used for its efficiency in screening the essential elements in limited investigations rounds. The Plackett-Burman Experimental Design (PBED) is constructed with the idea that each element requirements its individual improper level. Moreover, it needs 4<sup>n</sup> experiments to examine a maximal of 4<sup>n</sup> elements at two levels (Hilbert et al. 2012). The Box-Behnken (BB) response surface design products second-order polynomial calculations to estimate responses in assuring areas. Together with designs usage statistical analysis which can develop pectinase creation rapidly, with a significant decrease in medium charges (Tari et al. 2007). Numerous investigations have been described on numerical optimization of pectinase construction by A. niger (El Elnshasy et al. 2018; Junvea and Soni 2016; Mahesh et al. 2014).

The study aimed to use the statistical designs PBD and BB of response surface methodology (RSM) to optimize medium components for enhancing pectinase production by P. chrysogenum MF318506 using orange peel wastes as substrate. First, we used PBD to screen the important factors that affect pectinase production. Second, the BBD was applied to further optimization of the selected important factors using the PBD.
MATERIALS AND METHODS

Microorganism

Three fungal strains A. terreus MN901491, A. oryzae MN894021 were isolated from red seawater at Sharm El-Sheih province and identified by the 18S rRNA gene (Nehad et al., 2020) and P. chrysogenum MF318506 (Abd El Aty et al., 2020), were screened for pectinase production in this study. The fungal cultures were maintained on potato dextrose agar (PDA), incubated at 30°C for 7 days, and stored at 4°C.

Preparation of substrates

The different agricultural wastes as orange peel, banana peel, potato peel, pomegranate peel, wheat bran, and rice bran were used as a substrate for pectinase production. The proximate analysis of these substrates was mentioned by Nehad et al. (2020). These substrates were washed, dried at 70°C in an oven, and powdered using a blender before use. The pest substrate was further selected to give the maximum pectinase production.

Fermentation medium and pectinase production

The medium used for pectinase production was composed of (g/l): pectin 10; (NH₄)₂SO₄ 6; KH₂PO₄ 6; K₂HPO₄ 6; MgSO₄·7H₂O 1; at pH 7.0 (Okafor et al., 2010). Two disks (6mm) in diameter from the fungal strain were cultured in 50 ml of fermentation medium in 250 ml Erlenmeyer flasks and incubated at 30°C in a rotary shaker at 150 rpm, after 6 days of fermentation, the medium was centrifuged at 4,000 rpm for 15 min. 4°C. The filtrate obtained was used in the enzyme assay.

Enzyme assay

Pectinase activity was carried out according to Okafor et al. (2010) who, using 1.0% (w/v) citrus pectin as the substrate. The reaction mixture containing 1 ml of enzyme and 1 ml pectin (1%), prepared in sodium acetate buffer (0.1 M, pH 5.5) was incubated in a water bath at 50°C for 30 min. After incubation, 1 ml of DNS reagent was added and kept for 5 min in a boiling water bath. The absorbance was recorded at 540 nm using a spectrophotometer. The galacturonic acid was used as a standard. One unit (U) of enzyme activity was defined as the "amount of enzyme that required to release 1 µmol of galacturonic acid per minute under the standard assay conditions" (Minjares-carranco et al., 1997). Enzyme activity was calculated as:

\[
\text{Enzyme activity (U/ml)} = \frac{\text{Galacturonic acid released (µM)} \times \text{Dilution factor}}{\text{Incubation time (min)}}
\]

Effect of different agricultural wastes on pectinase production

One gram of the different powdered agricultural wastes (orange peel, banana peel, potato peel, pomegranate peel, wheat bran, and rice bran) has been added as a substrate in the fermentation medium, inoculated with P. chrysogenum MF318506, and incubated as the previous conditions (fermentation medium and production part). Then, pectinase activity was determined. One substrate was further selected to achieve the maximum pectinase activity.

Optimization of medium components for pectinase production by experimental designs

To determine variables that significantly affect pectinase production by P. chrysogenum MF318506, the statistical software package MINITAB, Inc (version 18.1.0.0) was used, an analysis of variance (ANOVA) for the obtained results was calculated. The optimization of the important medium components was carried out in two stages.

Stage one: Plackett-Burman design (PBD)

The PBD is a two-level fractional factorial design. PBD was used to screen the important variables that significantly affect pectinase production. The total number of trials to be carried out according to Plackett-Burman is \( k + 1 \) where \( k \) is the number of variables (medium components). PBD based on the first-order model: \( Y = \beta_0 + \sum \beta_i X_i \), Where \( Y \) is the response (growth of microorganism), \( \beta_0 \) is the model intercept, \( \beta_i \) is the linear coefficient, and \( X_i \) is the level of the independent variable. Eight independent variables (Orange peel, (NH₄)₂SO₄, Peptone, KH₂PO₄, K₂HPO₄, MgSO₄·7H₂O, KCI, FeSO₄) have been investigated using Plackett-Burman experimental design at two levels, low level (-1) and high level (+1), are shown in (Table 1). Eight independent variables were screened in 28 experimental runs. All experiments were carried out in duplicate and the average pectinase activity was recorded as the response, F value and P values and the proportion of variance R² determined the model is significant at \( P \leq 0.05 \) levels.

Stage two: Box-Behken design (BBD)

BBD, which uses the response surface methodology (RSM) was applied to further optimization of significant variables selected using the PBD. The variables affecting the pectinase production of the Plackett-Burman design were orange peel, peptone, and KH₂PO₄. These three factors were further studied for the optimal range in the Box-Behken design using software package MINITAB, Inc (version 18.1.0.0). Each factor in this design was studied at three levels, the lower, center, and high levels (Table 2).

Table 1 Variables and their levels of the Plackett-Burman experimental design

<table>
<thead>
<tr>
<th>Code</th>
<th>Variable</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Orange peel (%)</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>(NH₄)₂SO₄ (g/l)</td>
<td>2.0</td>
</tr>
<tr>
<td>C</td>
<td>Peptone (g/l)</td>
<td>2.0</td>
</tr>
<tr>
<td>D</td>
<td>KH₂PO₄ (g/l)</td>
<td>3.0</td>
</tr>
<tr>
<td>E</td>
<td>K₂HPO₄ (g/l)</td>
<td>3.0</td>
</tr>
<tr>
<td>F</td>
<td>MgSO₄·7H₂O (g/l)</td>
<td>0.1</td>
</tr>
<tr>
<td>G</td>
<td>KCl (g/l)</td>
<td>0.1</td>
</tr>
<tr>
<td>H</td>
<td>FeSO₄ (g/l)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table 2 Coded values of independent variables used in the Box-Behken design

<table>
<thead>
<tr>
<th>Code</th>
<th>Variables</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Orange peel</td>
<td>-1</td>
</tr>
<tr>
<td>B</td>
<td>Peptone</td>
<td>2.0</td>
</tr>
<tr>
<td>C</td>
<td>KH₂PO₄</td>
<td>3.0</td>
</tr>
</tbody>
</table>

A design of 15 experiments for 3 variables with 3 levels was performed. All experiments were carried out in duplicate and the average pectinase activity was recorded as the response.

RESULTS

Screening of microorganisms for pectinase production

Three fungal strains were screened for pectinase production. The results indicated that all strains are capable to produce pectinase. P. chrysogenum MF318506 showed the highest pectinase activity (0.214 U/ml) followed by A. oryzae MN894021 (0.179 U/ml) and A. terreus MN901491 (0.144 U/ml).

Production of pectinase using different agriculture wastes

Six different agricultural wastes (Orange peel, Banana peel, Potato peel, Pomegranate peel, Wheat bran, and Rice bran) were screened as a substrate for pectinase production from P. chrysogenum MF318506. The results in Fig. 1 revealed that orange peel gave the highest pectinase activity (0.48U/ml) followed by pomegranate peel (0.35 U/ml). While, the Rice bran, wheat bran, and potato peel gave (0.27, 0.25, 0.18 U/ml) respectively.

![Figure 1 Production of pectinase from Penicillium chrysogenum using different agriculture wastes](Image)

Screening of essential medium constituents for pectinase production by the Plackett-Burman design

To screen the important medium components for enhancing pectinase production from P. chrysogenum MF318506 using orange peel as substrate Plackett-Burman
design was used. Eight media components (Orange peel, (NH₄)₂SO₄, Peptone, KH₂PO₄, K₂HPO₄, MgSO₄·7H₂O, KCl, FeSO₄) were investigated. Table 3 shows that the Plackett-Burman design with both the experimental and predicted response for the 28 experimental runs. The data indicated that there was a wide variation from 0.305 to 1.057 U/ml of pectinase activity in the 28 runs. This variation proposed that the optimization of the medium components had a noteworthy consequence of the pectinase activity.

<table>
<thead>
<tr>
<th>Run</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Experimental</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>0.521</td>
<td>0.492</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.697</td>
<td>0.706</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.373</td>
<td>0.309</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.675</td>
<td>0.714</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.719</td>
<td>0.792</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.641</td>
<td>0.615</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>0.316</td>
<td>0.382</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.807</td>
<td>0.679</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.486</td>
<td>0.485</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>0.613</td>
<td>0.652</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.429</td>
<td>0.339</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.576</td>
<td>0.592</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.305</td>
<td>0.321</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>0.835</td>
<td>0.850</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>0.450</td>
<td>0.285</td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.662</td>
<td>0.679</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.753</td>
<td>0.775</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.529</td>
<td>0.590</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>0.474</td>
<td>0.490</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.884</td>
<td>0.941</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.584</td>
<td>0.519</td>
</tr>
<tr>
<td>22</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>1.057</td>
<td>0.955</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.460</td>
<td>0.402</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.455</td>
<td>0.508</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>0.1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.369</td>
<td>0.400</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.816</td>
<td>0.761</td>
</tr>
<tr>
<td>27</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.566</td>
<td>0.592</td>
</tr>
<tr>
<td>28</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>0.752</td>
<td>0.675</td>
</tr>
</tbody>
</table>

The outcomes showed that the maximal pectinase yield of 1.057 U/ml was detected in run 22 and achieved under optimal experimental conditions with 3% orange peel, 2.0 g/l (NH₄)₂SO₄, 6.0 g/l peptone, 6.0 g/l KH₂PO₄, 6.0 g/l K₂HPO₄, 0.1 g/l MgSO₄·7H₂O, 0.5 g/l KCl and 0.1 g/l FeSO₄, while the lowest activity of 0.305U/ml was achieved in run 13.

The main effects of the examined variables on the pectinase activity were calculated and presented in the Pareto graph. The Pareto graph is a significant tool for examining all the factors and emphasis on the most important variables. The Pareto chart results in Fig.2 indicated that orange peel, peptone, and KH₂PO₄ were recorded as a strong effect on pectinase production. The relationship between the medium components and the response obtained from the 28 experiments was predicted by the first-order model regression equation:

\[
Y = 0.206 + 0.1392 A - 0.01782 B + 0.04757 C + 0.0313 D - 0.0009 E - 0.0532 F - 0.0189 G - 0.860 H
\]

The results of pectinase activity were exposed to multiple linear regression analyses to estimate the t- and p-values of each constituent. The analysis of the regression coefficients and the t values of 8 variables (Table 4) revealed that values for A, C, and D had positive effects on pectinase activity, whereas B, E, F, G, and H had negative effects. The significance of variables was identified as A, C, and D. The variables with confidence levels more than 95% was reflected as the important factors.

<table>
<thead>
<tr>
<th>Term</th>
<th>Effect</th>
<th>Coeffi</th>
<th>SE Coeffi</th>
<th>T-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>0.5894</td>
<td>0.0175</td>
<td>33.71</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.2784</td>
<td>0.1392</td>
<td>2.04</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-0.0713</td>
<td>-0.0356</td>
<td>-2.04</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>0.1903</td>
<td>0.0951</td>
<td>2.04</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>0.0940</td>
<td>0.0470</td>
<td>2.04</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-0.0026</td>
<td>-0.0013</td>
<td>-2.04</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-0.0213</td>
<td>-0.0106</td>
<td>-2.04</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.0076</td>
<td>0.0038</td>
<td>-2.04</td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-0.0860</td>
<td>-0.0430</td>
<td>-2.04</td>
<td>0.056</td>
<td></td>
</tr>
</tbody>
</table>

Analysis of Variance (ANOVA) of the PBD for the pectinase production was shown in Table 5. To test the fit of the model equation can be evaluated the ‘determination coefficient R²’™. Normally, a regression model having an R² value greater than 0.90 is reflected to have a very extraordinary relationship (Haaland, 1980). The R² value of the regression model was 0.8537. The model F value of 13.86 implies the Model is significant, the p values of variables A (Orange peel), C (Peptone), and D (KH₂PO₄) were 0.001, 0.024, and 0.015 respectively, which were considered as significantly influential for pectinase production. So, we selected the three variables: orange peel, peptone, and KH₂PO₄ as an important element for additional study to achieve the maximal enzyme activity. This showed that the PBD was a potent statistical method for selecting the significant parameters (Plackett and Burman, 1946).

![Figure 2 Pareto chart showing the effect of various variables on pectinase production](image-url)
Optimization of medium Components for pectinase production by the Box-Behnken design

The box-Behnken design was implemented to further improve the concentrations of the most important constituents (orange peel, peptone, and KH₂PO₄) and the effect of their relations on pectinase activity. The BBD of variables in three levels with both the experimental and predicted response of the 15 experimental runs was shown in Table 6. The data indicated that the highest pectinase activity ranged from 1.286 to 1.292 U/ml was achieved by the central levels of all verified 3 constituents (Table 6: Runs 4, 12, and 15).

Table 6 Box-Behnken Design (BBD) of factors in coded levels with pectinase activity as a response

<table>
<thead>
<tr>
<th>Run</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Pectinase activity (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exp</td>
<td>Pred</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>0.824</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0.960</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0.838</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.286</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0.915</td>
</tr>
<tr>
<td>6</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0.786</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.995</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0.949</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0.936</td>
</tr>
<tr>
<td>10</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0.892</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.061</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.283</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1.043</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>0.885</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.292</td>
</tr>
</tbody>
</table>

Regression analysis, which was accomplished and fitted into the subsequent the 2nd order polynomial equation which shows the correlation between pectinase and the three variables

Y (pectinase activity) = -6.525 + 4.271 A + 0.4087 B + 0.6161 C - 0.8400 A² - 0.04544 B² - 0.06811 C² - 0.00047 AB + 0.01300 AC - 0.00083 BC

Where Y is the pectinase activity (U/ml), A, B and C were the coded variables for orange peel concentration, Peptone and KH₂PO₄, respectively.

Analysis of Variance (ANOVA) of the Box-Behnken Design (BBD) for the pectinase production was shown in Table 7. From the data presented in Table 7, we found that the value of the “Predicted R²” to be 0.9571 which is a reasonable agreement with R² of 0.9972 and Adjusted R² of 0.9922. This revealed that there is a good agreement and a high correlation between values predicted by the model, and the regression model offers an exceptional clarification of the correlation amongst the independent variables and the response (pectinase production). The data presented in Table 7 indicated that the model F value of 199.75 suggests the Model is significant. There is only a 0.01% chance that a F-value this large could occur due to noise, The P values of the model were 0.002 (p < 0.05) which showed that the model terms were significant, the values of A, B, C, A², B², and C² were significant whereas AB, AC, BC were not significant.

Table 5 Analysis of Variance (ANOVA) of media components by Plackett-Burman design for pectinase activity +

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of squares</th>
<th>df</th>
<th>Mean square</th>
<th>F-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>0.94893</td>
<td>8</td>
<td>0.11867</td>
<td>13.86</td>
<td>0.003</td>
</tr>
<tr>
<td>orange peel (NH₄)₂SO₄</td>
<td>0.54266</td>
<td>1</td>
<td>0.54265</td>
<td>63.39</td>
<td>0.001</td>
</tr>
<tr>
<td>Peptone</td>
<td>0.25346</td>
<td>1</td>
<td>0.25346</td>
<td>4.16</td>
<td>0.056</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.06185</td>
<td>1</td>
<td>0.06185</td>
<td>7.23</td>
<td>0.015</td>
</tr>
<tr>
<td>K₃HPO₄</td>
<td>0.00005</td>
<td>1</td>
<td>0.000046</td>
<td>0.01</td>
<td>0.942</td>
</tr>
<tr>
<td>MgSO₄·7H₂O</td>
<td>0.00317</td>
<td>1</td>
<td>0.00317</td>
<td>0.37</td>
<td>0.550</td>
</tr>
<tr>
<td>KCI</td>
<td>0.00040</td>
<td>1</td>
<td>0.000401</td>
<td>0.05</td>
<td>0.831</td>
</tr>
<tr>
<td>FeSO₄</td>
<td>0.05177</td>
<td>1</td>
<td>0.05177</td>
<td>6.05</td>
<td>0.240</td>
</tr>
<tr>
<td>Error</td>
<td>0.16265</td>
<td>19</td>
<td>0.008571</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.11159</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R² 0.8537; R²(adj) 0.7921; R² (Pred) 0.6822

Table 7 Analysis of Variance (ANOVA) for response surface quadratic model of Box-Behnken Design (BBD) for the production of pectinase

<table>
<thead>
<tr>
<th>Source</th>
<th>df</th>
<th>Sum of squares</th>
<th>Mean square</th>
<th>F-Value</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>9</td>
<td>0.39487</td>
<td>0.043875</td>
<td>199.75</td>
<td>0.002</td>
</tr>
<tr>
<td>A-Orange peel</td>
<td>1</td>
<td>0.02442</td>
<td>0.024420</td>
<td>111.18</td>
<td>0.000</td>
</tr>
<tr>
<td>B-Peptone</td>
<td>1</td>
<td>0.027966</td>
<td>0.027966</td>
<td>127.32</td>
<td>0.000</td>
</tr>
<tr>
<td>C- KH₂PO₄</td>
<td>1</td>
<td>0.018721</td>
<td>0.018721</td>
<td>85.23</td>
<td>0.000</td>
</tr>
<tr>
<td>A²</td>
<td>1</td>
<td>0.162831</td>
<td>0.162831</td>
<td>741.32</td>
<td>0.000</td>
</tr>
<tr>
<td>B²</td>
<td>1</td>
<td>0.121968</td>
<td>0.121968</td>
<td>555.28</td>
<td>0.000</td>
</tr>
<tr>
<td>C²</td>
<td>1</td>
<td>0.086716</td>
<td>0.086716</td>
<td>394.79</td>
<td>0.000</td>
</tr>
<tr>
<td>AB</td>
<td>1</td>
<td>0.000090</td>
<td>0.000090</td>
<td>0.41</td>
<td>0.550</td>
</tr>
<tr>
<td>AC</td>
<td>1</td>
<td>0.000380</td>
<td>0.000380</td>
<td>1.73</td>
<td>0.245</td>
</tr>
<tr>
<td>BC</td>
<td>1</td>
<td>0.000025</td>
<td>0.000025</td>
<td>0.11</td>
<td>0.750</td>
</tr>
<tr>
<td>Error</td>
<td>5</td>
<td>0.001098</td>
<td>0.000220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack-of-Fit</td>
<td>3</td>
<td>0.001056</td>
<td>0.000352</td>
<td>16.77</td>
<td>0.057</td>
</tr>
<tr>
<td>Pure Error</td>
<td>2</td>
<td>0.000042</td>
<td>0.000021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
<td>0.395969</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R² 0.9972; R²(adj) 0.9922; R² (Pred) 0.9571

The optimal concentrations of medium components yielding maximum pectinase activity has been obtained from the response surface (3D) and contour plots (2D). Response surface and contour plots (Fig. 3A-F) represent relations among the experimental elements (orange peel, peptone, and KH₂PO₄) and the response of pectinase activity. Figure (3A-3B) displays the surface and contour plots of the effect of relations among orange peel (2-3 %) and peptone (2-6 g/l) while keeping KH₂PO₄ constant at 4.5 g/l. The maximum pectinase activity of 1.292 U/ml was observed at 2.5% orange peel and 4 g/l peptone. Figure (3C-3D) shows the surface and contour plots of the effect of interactions between orange peel (2-3%) and KH₂PO₄ (3-6 g/l) while keeping peptone constant at 4 g/l. The outcomes presented that a higher pectinase activity was obtained at the orange peel (2.5%), while 4.5 g/l KH₂PO₄ was proper for constructing a maximum pectinase yield. Alternatively, the response surface and contour plot for peptone and KH₂PO₄ as shown in Fig. (3E-3F) indicated that the orange peel concentration was fixed at 2.5%. As well as, the increase in both constituents progressively improved pectinase yield up to its maximum, and an additional increase caused in a reduced in pectinase yield. The last optimal peptone and KH₂PO₄ concentrations were 4 and 4.5 g/l individually. Besides, from the model outcomes matched to our experimental runs, it can be noticed that the maximum experimental pectinase activity of 1.292 U/ml was in moral accordance with the model predicted activity of 1.287 U/ml.
Hold value

A

KH$_2$PO$_4$ 4.5

B

Hold value

C

Peptone 4

D

Hold value

E

Orange peel 2.5

F

Figure 3 (A-F) Surface (A) and contour (B) plots showing the effect of interactions of orange peel concentration and peptone on pectinase activity. Surface (C) and contour (D) plots showing the effect of interactions of orange peel concentration and KH$_2$PO$_4$ on pectinase activity and Surface (E) and contour (F) plots showing the effect of interactions of peptone and KH$_2$PO$_4$ on pectinase activity

Discussion

Pectinase is one of the most significant industrialized enzymes, pectinases find broad, delicate in the various fields. Plants and microorganisms are the main sources of the enzyme production, however, microbial sources were considered the most promising.

_A. oryzae_ MN894021 produced the pectinase yield of 0.214 U/ml from the first screening of different strains. The results agree with Ibarra et al. (2017) who
mentioned that the *Aspergillus, Penicillium*, and *Rizopus* species are universally used fungi for pectinase production. Similar results have been reported by Benzerra et al. (2012); Thangaratham Manimegalai (2014) and Abdullah et al. (2018), they indicated that *A. japonicus*, *Penicillium sp.*, *A. flavus*, and *A. niger* IBT-7 showed pectinolytic activity. Based on the obtained results *P. chrysogenum* was chosen in this study for further experiments. The orange peel gave the highest pectinase activity of 0.48 U/ml (Fig. 1). Comparatively less pectinase production has been observed with banana peel waste with a yield of 0.15 U/ml. These results showed that orange peel waste was the best substrate for pectinase production by *P. chrysogenum* due to, the orange peel is a valuable source for pectinase production because it's rich in pectin, contains a considerable amount of valuable substances such as ash (7.39%), fat (1.85%), pectin (7.0%), lignin (6.4%), crude fiber (7.8%), total sugar (14.08%), reducing sugars (10.70%) and non-reducing sugar (3.70%), cellulose and hemicellulose (5.1%) (Handa et al. 2016). Also, our results agree with numerous authors who indicated that the orange peel was the best substrate for the maximal pectinase production by *A. niger* (Mrudulab and Anitaraj 2001); from *Aspergillus sp.* (Camargo et al., 2005); by *P. oxalicum* (Santos et al., 2008); from *A. niger* URM 4645 by Maller et al. (2011); Miciel et al. (2013). These results are in agreement with those stated by Tari et al. (2007) where they indicated that the p-value reveals the correlation amongst the variables, and the response variable, p-value lower than 0.05, shows that the practical model is significant. The model F-value of 190.75, infers the Model is significant. Likewise, the achieved results are in agreement with those presented by Li et al. (2008). The model R² value 0.9883 disguised that the fitted linear, an interaction, and quadratic terms could elucidate 98.83% of the variation, viewing an acceptable demonstration of the process model. The information introduced in Table 7 demonstrated that the model F value of 101.952, p<0.0001 respectively, for pectinase activity, show that the applied model is highly significant (Handa et al. 2016). Likewise, (Asia et al. 2019) reported that the significance of the model (p<0.05) was determined by Analysis of variance (ANOVA) that indicated an F-value of 8.22. On the other hand, Kuvvet et al. (2019) obtained a 2-fold increase in pectinase yield from apple pomace waste using the Box-Behnken response surface methodology by Bacillus sp. The interactions amongst the experimental factors, e.g., orange peel, peptone, KH₂PO₄, and the pectinase activity as a response by Response surface and contour plots were shown in Figures (3a-f). Ajayi et al. (2018) explained that the relationship between different parameters of temperature, pH, and substrate concentration by the second-order polynomial. The two-dimensional contour plots were applied to establish the optimal values of the variables and found there was an important enhancement in the pectinase activity form *A. niger*. CONCLUSIONS Three fungal strains were screened for pectinase activity. Among of them, *P. chrysogenum* MF318506 gave the highest pectinase yield. Six different agricultural wastes were tested as substrates for pectinase activity and the orange peel gave the maximum pectinase activity (0.48U/ml). Employing the Plackett- Burman design denoted that the optimization of the medium components had a noteworthy effect on the pectinase activity. The maximal pectinase activity was achieved under optimum experimental conditions. By applying the Box-Behnken Design, the maximum pectinase activity of 1.292U/ml was obtained at 2.5% orange peel and 4g/l peptone. The obtained results indicated that the statistical optimization, enhanced the pectinase activity from the MF318506 strain and recommend using this strain as a pectinase producer in different industrial application fields. Acknowledgements: The authors acknowledge the National Research Centre especially Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division for their supportive and assurance. REFERENCES Abd El Aty, A. A., Mohamed, A. A., Zohair, M. M., & Soliman, A. A. F. (2020). Statistically controlled biogenesis of silver nano-size by Penicillium chrysogenum MF318506 for biomedical application. *Biosc Biotechnol* 101(10). https://doi.org/10.1186/s12653-020-101592-1. Abdullah, R., Farooq, I., Kaleeme, A., Iqtedar, M., & Ifikhar, T. (2018). Pectinase production from *Aspergillus niger* IBT-7 using solid-state fermentation. *Bangladesh J Bot* 47(3): 473-487. https://doi.org/10.3329/bjb.v47i3.38714. Ahmed, I., Zia, M. A., Hussain, M. A., Akram, Z., Naveed, M. T. & Nowrozii, F. (2019). Optimization of pectinase production by *Aspergillus niger*, its purification and characterization. *J Rad Res & Appl Sci* 9:148 -154. https://doi.org/10.1016/j.jrras.2015.11.003. Ahmed, K., Elsahn, E. V. & Ul-haq, Q. (2015). Biosynthesis, purification and characterization of commercial enzyme by *Penicillium expansum* link. *Pak J Bot* 47(4): 1521-1526. Ajayi, A. A., Salubi, A. E., Lawal, B., Onibokun, A. E., Ajayi, O. M. & Oguleye, T. A. (2018). Optimization of pectinase production by *Aspergillus niger* using central composite design. *Af J Clin Exp Microbiol* 19 (4): 314-319. https://doi.org/10.4314/aicem.v19i4.10. Anissha, S. K. & Girish, K. (2014). Pectinolytic activity of *Rizopus sp.* and *Trichoderma viride*. *Int J Res Pure Appl Microbiol* 4: 28-31. Asia, A., Khan, M.N., Ahmed, A., Khan, S. A. & Sohail, M. (2019). Optimization of pectinase production from *Geotrichum candidum* AA15 using response surface methodology. *Pak J Bot* 51(2): 743-750. https://doi.org/10.30848/pjb2019-2041. Atalla, S. M. M., El Gamal, N. G., & Awad, H. M. (2020). Chitinase of marine *Penicillium chrysogenum* MH745192: Isolation, identification, production, and characterization as a controller for citrus fruits postharvest pathogens. *Jord J Biol Sci* 13: 19-28 Atalla, S. M. M., El Gamal, N. G., & Awad, H. M. & Ali, N. F. (2019). Production of pectinase from agricultural wastes by isolated marine *Penicillium expansum* RSW_SEP1 as dye wool fiber. *Heliyon* 5 (8), e02302. https://doi.org/10.1016/j.heliyon.2019.e02302. Awad, Hassan Mohamed, Hesham Ali El-Enshasy, Siti Zulaiha Hanapi, Eman Ramadan Hamed & Bustanur Rosidi (2014). A new chitinase-producer strain *Streptomyces glaucoviniger* WCC- A03: Isolation and identification as a biocontrol
https://doi.org/10.1080/14786419.2014.939083


https://doi.org/10.1007/s11274-011-0101-2


https://doi.org/10.3390/en5083019

https://doi.org/10.1016/j.jfoodeng.2005.01.021

https://doi.org/10.1016/j.indcrop.2014.03.028

https://doi.org/10.1007/s12649-014-0137-6

https://doi.org/10.1186/s12896-018-0481-7


https://doi.org/10.3390/fermentation2020010

https://doi.org/10.1007/s11947-011-0434-1

https://doi.org/10.1016/j.jchromb.2011.01.020


https://doi.org/10.5505/tjbj.2014.55707

https://doi.org/10.1007/s12649-017-0194-1

https://doi.org/10.1007/s12649-014-0107-5

https://doi.org/10.1007/s12649-014-0137-4

https://doi.org/10.1016/j.enzmictec.2007.11.065

https://doi.org/10.3390/molecules18021660

https://doi.org/10.5897/ajb2014.13880


https://doi.org/10.1016/j.enzmicrobtech.2011.11.006

https://doi.org/10.1134/s2079261010050007


