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INTRODUCTION 

 

In the clinical context, Staphylococcus aureus (S. aureus) is considered the most 
pathogenic organism in the Gram-positive Staphylococcus genus (Bitrus et al., 

2018). It is a commensal bacterium, which colonizes the majority of the human 

population (Tong et al., 2015). S. aureus becomes opportunistic when it gains 
access to open wounds, or when it colonizes populations suffering from lowered 

immunity including immunocompromised patients, diabetics, elderly people and 

children (Tong et al., 2015; Bitrus et al., 2018). This opportunistic pathogen can 

lead to high morbidity and mortality. S. aureus can cause a vast variety of 

diseases ranging from mild and moderate skin infections to more severe and life-

threatening infections such as endocarditis, food poisoning, osteomyelitis and 
toxic shock syndrome (Becker, 2018; Hamzah et al., 2019). 

Disease severity and the multiple pathogenic implications of S. aureus are 

attributed to the diversity of virulence factors that act in a complicated 
harmonious manner such as the production of biofilm, surface proteins, 

exfoliative toxins, exoenzymes and exotoxins (Connolly et al., 2017). 

Staphylococcal ability to produce these virulence factors enables its attachment to 
the host tissues and evading the host immune system to subsequently cause its 

cellular and systemic toxic effect (Ionescu et al., 2015). Indeed, S. aureus 

produces many potent exotoxins, co-factors and exoenzymes, among which, 
proteases, lipases, staphylokinase and hyaluronidases are especially important 

(Lacey et al., 2016). The regulation of virulence determinant production in S. 

aureus involves several global regulatory loci; of these, SarA, a regulatory 
nucleic acid binding protein, is particularly important (Arvidson & Tegmark, 

2001; Jones et al., 2008; Mauro et al., 2016; Jenul & Horswill, 2019). 

S. aureus secretes many types of proteases that play a crucial role in the 
staphylococcal proteolytic effects, breaking down host peptide bonds. Protease 

production is mediated by different operons encoding seven serine proteases 

(sspA) and serine protease–like proteins (spls), two cysteine proteases 
(staphopain A, scpA and staphopain B, sspB) and a metalloprotease (aureolysin, 

aur) (Singh & Phukan, 2019). These proteases are able to lyse many host 
proteins such as fibrinogen and fibronectin (Pietrocola et al., 2017). Besides 

protease production, S. aureus is known as a potential lipase producer. Lipase 

production by this pathogen enables immune evasion by interfering with the 
phagocytosis by human granulocytes (Chen & Alonzo, 2019). Lipases can 

inactivate antimicrobial lipids, and also facilitate host cell lysis by helping 

degradation of cell membrane lipids. Lipase effect on host lipids results in release 

of free fatty acids from lipid stores (Cadieux et al., 2014; Chen & Alonzo, 

2019). There are two types of lipases; Sal1 and glycerol ester hydrolase (Geh = 

Sal2) encoded by gehA and gehB, respectively (Nguyen et al., 2018; Chen & 

Alonzo, 2019). Furthermore, staphylokinase is a 136 amino acid long co-factor 
found associated with the cell surface and in the environment of cell culture. It 

can bind to host antibacterial peptides including α defensins and revoke their 

antibacterial action. It does not have proteolytic ability on its own, but its activity 

arises after the formation of 1:1 complex with plasmin to form Sak–plasmin 

active complex that converts plasminogen (PLG) into plasmin with broad 

proteolytic range (Pietrocola et al., 2017; Tam & Torres, 2019). Besides, the 
ability of S. aureus to go through tissues rich in hyaluronic acid (HA) is based on 

its secreted hyaluronidase enzyme or hyaluronate lyase that was previously 

known as the spreading factor. Hyaluronidase is encoded by hysA1, however, in 
some S. aureus strains, another type of hyaluronidase enzyme was found that is 

about 75.9% identical to hyaluronate lyase 1 and is encoded by hysA2 (Tam & 

Torres, 2019). 
In the current study we depicted effect of the global regulator SarA on protease, 

lipase, staphylokinase and hyaluronidase production in S. aureus. This was 

fulfilled by comparing the gene expression as well as quantitative production of 
these toxins between wild type, sarA mutant and revertant S. aureus strains. 

 

MATERIALS AND METHODS 

 

Bacterial strains and culture conditions 

 
S. aureus strains utilized in this study are described in Table 1 (Beenken et al., 

2003; Morrison et al., 2012). Tryptic soy broth (TSB) was used for routine 

cultivation of S. aureus strains. Moreover, extraction of toxins and their 
quantitative assay were carried out in TSB. 

 
 

 

 
 

Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that is responsible for many infectious diseases in human, some of 

which may be fatal. The regulation of toxins production and virulence factors in this pathogen is controlled by many global regulators 

including the staphylococcal accessory regulator, SarA. In this study, we outlined the influence of SarA on toxins production in S. 

aureus. The expression of genes encoding toxins was measured using real-time PCR and toxins production was quantitatively assayed. 

Gene expression and quantitative toxins production were compared in three staphylococcal strains; UAMS-1 wild type clinical strain, its 

sarA mutant strain and a revertant strain. Genes encoding for proteases (including sspA, aur, scpA and sspB), genes encoding for 

hyaluronidases (including hysA1 and hysA2) and gene encoding for staphylokinase (sak) were upregulated in response to the sarA 

mutation. On contrary, genes encoding for lipases (including lip1 and lip2) were downregulated. Moreover, the quantitative production 

of protease, hyaluronidase and staphylokinase was significantly increased due to the sarA mutation. On the other hand, the quantitative 

production of lipase was significantly altered. Overall, our findings indicate that SarA is an effective global regulator of toxins 

production that can suggest new prospective therapeutics for the treatment of S. aureus infections. 
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Table 1 Bacterial strains used in this study 

Bacterial strain Characters Reference 

UAMS-1 

Clinical standard isolate; 
virulent; methicillin sensitive; 

isolated from bone infection 

(Beenken et al., 

2003; Morrison et 

al., 2012) 

UAMS-1 sarA 

mutant  
UAMS-1, sarA mutant 

(Beenken et al., 

2003; Morrison et 

al., 2012) 

UAMS-1 sarA 

revertant  

Revertant strain of UAMS-1 

sarA mutant strain 

(Beenken et al., 

2003; Morrison et 

al., 2012) 

 

Measurement of bacterial growth 

 

S. aureus strains were inoculated in TSB and incubated at 37°C overnight on a 

shaker incubator adjusted at a speed of 150 rpm. Thereafter, an aliquot from each 
previously grown cultures was subcultured into fresh TSB and subsequently 

incubated with shaking at 37°C. The bacterial cell density and growth rate were 

monitored by determining the optical density of the cultures at 600 nm (OD600) 
every 60 minutes to establish the growth curve and to determine the bacterial 

growth phases. 

 

Real-time PCR (rt-PCR) 

 

S. aureus strains were inoculated in TSB and incubated at 37°C with shaking, and 
RNA isolation was established during the log phase of bacterial growth. Cell 

pellets were harvested by centrifugation at 10000 rpm for 5 minutes at 4°C. Then, 

the resultant cell pellets were mixed with 300 µL of triazole reagent (TRI 
reagent®, Sigma-Aldrich, USA) and 150 mg glass beads (212-300 μm, 50- 70 

U.S. sieve, unwashed, Sigma-Aldrich, USA). The reaction mixtures were heated 

in a heating block adjusted at 60°C for 20 minutes with vortexing every 5 

minutes, and then were vortexed for 30 minutes. Afterwards, the cells were 
incubated in a -80°C freezer for 3 minutes, then incubated at 37°C for another 3 

minutes. This cycle of freezing and thawing was repeated 3 times to disrupt the 

cell integrity and was followed by centrifugation at 6000 rpm for 5 minutes at 
4°C. Following the TRI reagent® manufacturer’s protocol, RNA was precipitated, 

air dried for 10 minutes and resuspended in 20 µL of RNase free water. RNA 

samples were treated with DNase set (Qiagen, Hilden, Germany), according to 
the manufacturer’s protocol, and then were kept at -80°C. The quality of isolated 

RNA was checked and its concentration was measured using NanoDrop (Thermo 

Fisher Scientific inc., Massachusetts, USA). Using SensiFAST™ cDNA 
synthesis kit (Bioline, Bloomberg, USA), synthesis of cDNA was performed 

according to the manufacturer’s guidelines from the purified RNA. Real-time 
PCR (rt-PCR) was conducted using 5x HOT FIREPol® EvaGreen HRM Mix 

(Solis BioDyne, Tartu, Estonia) according to the manufacturer’s guidelines and 

the Rotor-Gene Q (Qiagen, Hilden, Germany). Each reaction mixture consisted 
of 4 μL of 5x HOT FIREPol® EvaGreen HRM Mix, 2 μL of template cDNA, 12 

μL of sterile water (PCR grade), 1 μL of forward primer (250 nM) and 1 μL of 

reverse primer (250 nM) (Table 2). In every PCR run, negative control reaction 
mixtures were included and were prepared by excluding the reverse transcriptase 

enzyme or cDNA template from the reaction mixture. In each run, a pool (8 µL) 

was created from the cDNA of tested strains, and 4 dilution points from this pool 
were included in each run to establish a standard curve. PCR was carried out 

according to the conditions; primary activation for 15 minutes at 95°C. Then, 45 

cycles of denaturation for 12 seconds at 95°C, annealing for 20 seconds at the 
appropriate temperature and extension for 20 seconds at 72°C. Amplification 

specificity was determined from the amplicon melting curves. 16S rRNA was 

used as a house-keeping gene to normalize the expression of tested genes. The 
RNA concentration of each sample was calculated through comparing Ct of each 

gene sample to the established standard curve. In these experiments, the house-

keeping gene was used as an endogenous reference gene, where the level of 
expression of each gene in different samples was calculated compared to the 

house-keeping gene by the comparative method (Ct) using UAMS-1 as a 

calibrator sample (Schmittgen & Livak, 2008). 
 

 

Table 2 Oligonucleotide primers used in this study 

Gene Accession number Nucleotide sequence 5’~ 3’ Position Size (bp) 

16S rRNA JTJK01000002 F AACTAAGCTTAAGGGTTGCG 417--601 185 

  R GGAGCATGTGGTTTAATTCG   

 

sspB JTJK01000001 F CATTAGCAACAACTGCTAGG 141--382 242 

  R GCGTACATTATACCCTGAAG   

 

sspA JTJK01000001 F TGAGTTACCACCAGTTGTAC 364--601 238 

  R CGAAGGTGATTTAGCAATCG   

 

hysA1 JTJK01000001 F CTAATGGATGATATGCTCAC 601--843 243 

  R GGCAGAATCTTGAACATAAG   

 

hysA2 JTJK01000002 F ACATTGATCATCAAGACGTC 881--1100 220 

  R TCATTTTCACGACTGATAGC   

 

lip2 JTJK01000001 F CATGATAAAGCAGCACCAAC 541--786 246 

  R TTTATCTGTCGGTTTCTCCG   

 

lip1 JTJK01000002 F GTCTGCTTTTTGTCTATCGC 322--572 251 

  R ATTCAAGAGTAGACTTCGGG   

 

scpA JTJK01000002 F AAGTTAATGTCGAGGACAAG 119--363 245 

  R ATCCTTAGTGACTTTTGGTG   

 

sak JTJK01000002 F TGTTATAGGGAAAGACTTCG 91--339 249 

  R TTGATGGTAAATGTGACTGG   

 

aur JTJK01000002 F CATGCTTCGTAAAGCATCTC 301--570 270 

  R AATAACGCTGCATGGATTGG   

 

Assessment of the protease activity 

 
S. aureus strains were inoculated in TSB and incubated at 37°C with shaking at 

150 rpm for an appropriate time. Thereafter, cultures were centrifuged at 10000 

rpm for 10 minutes at 4°C. The obtained supernatants were filtered through 0.2 
µM Millipore filter and subsequently used in the assay of protease activity. 

Protease quantitative assay was carried out on bacterial supernatants according to 

(Elgaml et al., 2013; Elgaml et al., 2014; Abdel-Sattar et al., 2016). Azocasein 
(1.0 mg) (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 50 mM Tris 

HCl (pH 8.0) in volume of 0.6 mL. From this solution, 0.2 mL was mixed with 

0.4 mL of the supernatants. The reaction mixtures were incubated for an 

appropriate period of time at 30°C. Thereafter, 1.4 mL of 5% trichloroacetic acid 
(TCA) was added to cease the reactions. The reaction mixtures were centrifuged 

at 5000 rpm for 5 minutes at 4°C and the obtained supernatants were added to 

equal volumes of 0.5 M NaOH. Finally, the absorbance was determined at 440 
nm. In these experiments, TSB was used as a negative control. 

 

 

 

 

https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000002
https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000001
https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000001
https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000001
https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000002
https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000001
https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000002
https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000002
https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000002
https://www.ncbi.nlm.nih.gov/nuccore/JTJK01000002
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Assessment of the lipase activity 

 

Reaction mixtures were prepared by mixing 20 µL of the prepared bacterial 

supernatants (as described above in protease assay), 75 µL of 20 mM p-nitro 
phenyl palmitate (P-NPP) and 0.1 M tris HCl buffer (pH 8.5) to a final volume of 

3 mL. The reactions were incubated for 10 minutes at 37°C, and then were frozen 

at -20°C for another 10 minutes to cease the lipolytic action. The yellow color of 
the reaction product was spectrophotometrically measured at 410 nm (Sarkar et 

al., 2012; El-baz et al., 2017). In these experiments, TSB was used as a negative 

control. 

 

Assessment of the staphylokinase activity 

 

Staphylokinase extraction was carried out according to (Shagufta Naseer et al., 

2014). In a 10 mL of TSB, colonies of S. aureus stains were inoculated and 
incubated on a shaker incubator at 150 rpm overnight at 37°C. Then, OD600 of the 

cultures was adjusted to 0.2-0.275. In a 10 mL of TSB, 200 μL of the adjusted 

bacterial suspensions were subcultured and incubated for 24 hours at 37°C on a 
shaker incubator at 200 rpm. Then, the cultures were centrifuged for 15 minutes 

at a speed of 3000 rpm at 4°C. To the separated supernatants, 40% (v/v) cold 

absolute alcohol was added and they were frozen at -20°C for two days to 
completely precipitate the staphylokinase enzyme. Staphylokinase enzyme was 

collected as pellets after centrifugation of the enzyme precipitate at 10000 rpm 

for 20 minutes at 4°C. The pellets were subsequently dissolved in 0.1 M 
phosphate buffer solution (pH 7.2) (one-tenth of the original supernatant volume) 

and stockpiled at -20°C for later use. Thereafter, staphylokinase enzyme 

quantitative assay was established. Initial weights of Eppendorf tubes were 
measured (X1) and 500 μL of freshly collected human blood was transferred to 

the Eppendorf tubes, and incubated for 60 minutes at 37°C to enable blood 

clotting. After complete clotting of blood samples, the produced serum was 
aspirated and the Eppendorf tubes were reweighed (X2). The clot weight was 

determined by calculating the difference between the second and the first weights 

(X2 – X1). To each Eppendorf tube, 250 μL of the previously prepared enzyme 
extract was added, and then the tubes were incubated at 37°C for 2 hours to 

evaluate clot lysis. After lysis, every Eppendorf tube was weighed subsequent to 

fluid removal. For each sample, the difference in clot weights (before and after 
lysis) was calculated. Afterwards the clot lysis percentage, which represents the 

staphylokinase plasmolytic action was calculated. In these experiments, TSB was 

used as a negative control. 
 

% lysis of clot = 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑖𝑛 𝑐𝑙𝑜𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑛𝑑 𝑎𝑓𝑡𝑒𝑟
𝑙𝑦𝑠𝑖𝑠

𝐶𝑙𝑜𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑙𝑦𝑠𝑖𝑠
 × 100 

 

Assessment of the hyaluronidase activity 

 

Hyaluronidase quantitative assay was executed on previously separated bacterial 
supernatants (as described above in protease assay) using 1% agarose plates 

containing 0.4 mg/mL of hyaluronic acid (Sigma, H-1504) in 0.3 M sodium 
phosphate buffer (pH 5.3) and 1% bovine serum albumin (BSA). Under aseptic 

conditions, wells were cut in agarose to embody 100 µL of the supernatant of 

tested strains. After 24 hours of incubation at 37°C, 2 M acetic acid was added to 
flood the plates. The undigested hyaluronic acid was detected as opaque 

precipitation in conjugation with BSA behind the clear zones of the hydrolyzed 

hyaluronic acid. The clear zone diameters were measured in millimeters (mm) 

(Kumar et al., 2012; Abdelkader et al., 2018). In these experiments, TSB was 

used as a negative control. 

 

Statistical analysis 

 

Significance of difference was assessed in the results by repeating the 
experiments three independent times and comparing the data using student's t-

test. P values lower than 0.05 were regarded significantly different. 

 

RESULTS 

 

Effect of sarA disruption on protease activity 

 

The UAMS-1 wild type strain and its sarA mutant strain as well as the revertant 

strain were compared for protease toxins gene expression and toxin production. 
Expression of sspA, aur, scpA and sspB was significantly increased in the sarA 

mutant strain as compared to the wild type and revertant strains (Figure 1A). The 

relative gene expression of the mutant strain versus the wild type strain was 
32.10, 81.30, 5.85 and 9.81 for sspA, aur, scpA and sspB, respectively. Moreover, 

protease production was significantly higher in the sarA mutant strain than the 

wild type and revertant strains (Figure 1B). The protease activity of the mutant 
strain was 2.87 of that of the wild type strain.  

 

 
 

Figure 1 Effect of sarA disruption on sspA, aur, scpA and sspB gene expression 

levels (A) and on protease activity (B). Data was represented as mean ± S.D. The 

asterisk (*) indicates significant difference (P < 0.05) between sarA mutant strain 
(black bar) and both UAMS-1 wild type strain (white bar) and revertant strain 

(grey bar). 

 

Effect of sarA disruption on lipase activity 

 

Mutation of sarA was noticed to downregulate lip1 and lip2 expression (Figure 
2A). The relative gene expression of the mutant strain versus the wild type strain 

was 0.11 and 0.12 for lip1 and lip2, respectively. This result was confirmed by 
the quantitative assay of lipase, where, lipase production was significantly altered 

in the sarA mutant strain compared to both the wild type and revertant strains 

(Figure 2B). The lipase activity of the mutant strain was 0.11 of that of the wild 
type strain. 
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Figure 2 Effect of sarA disruption on lip1 and lip2 gene expression levels (A) 

and on lipase activity (B). Data was represented as mean ± S.D. The asterisk (*) 

indicates significant difference (P < 0.05) between sarA mutant strain (black bar) 

and both UAMS-1 wild type strain (white bar) and revertant strain (grey bar). 

    

Effect of sarA disruption on staphylokinase activity 

 
Expression of sak was significantly upregulated in the sarA mutant strain in 

contrast to the wild type and revertant strains (Figure 3A). The relative gene 

expression of the mutant strain versus the wild type strain was 3.35 for sak. In 
addition, staphylokinase production level increased noticeably in response to the 

sarA mutation compared to the wild type and revertant strains (Figure 3B). The 

staphylokinase activity of the mutant strain was 1.55 of that of the wild type 
strain. 

 

 

 
 

Figure 3 Effect of sarA disruption on sak gene expression level (A) and on 

staphylokinase activity (B). Data was represented as mean ± S.D. The asterisk (*) 

indicates significant difference (P < 0.05) between sarA mutant strain (black bar) 
and both UAMS-1 wild type strain (white bar) and revertant strain (grey bar). 

 

Effect of sarA disruption on hyaluronidase activity 

 

Expression of hysA1 and hysA2 was upregulated due to the sarA mutation in 

comparison to the wild type and revertant strains (Figure 4A). The relative gene 

expression of the mutant strain versus the wild type strain was 9.89 and 230.89 
for hysA1 and hysA2, respectively. Furthermore, quantitative assay of 

hyaluronidase activity revealed lower production levels in the wild type and 

revertant strains, and a higher level in the sarA mutant strain (Figure 4B). The 
hyaluronidase activity of the mutant strain was 2.06 of that of the wild type 

strain. 

 

 
 
Figure 4 Effect of sarA disruption on hysA1 and hysA2 gene expression levels 

(A) and on hyaluronidase activity (B). Data was represented as mean ± S.D. The 

asterisk (*) indicates significant difference (P < 0.05) between sarA mutant strain 
(black bar) and both UAMS-1 wild type strain (white bar) and revertant strain 

(grey bar). 

 

DISCUSSION 

 

S. aureus is an important opportunistic Gram-positive pathogen that is 
responsible for a number of clinical infections (Chuang-Smith & Schlievert, 

2021). Previous studies showed that S. aureus is implicated in many clinical 

cohorts (Mehraj et al., 2016). It is a major cause of skin and soft tissue infections 
worldwide as it is the causative agent of more than 80% of the skin and soft 

tissue infections. It is the most commonly isolated pathogen from infections in 

surgical sites, purulent cellulitis, wounds and chronic ulcers (Mehraj et al., 

2016). It can systemically infect most tissues in the host such as eyes, brain, 

bones, joints, kidneys, lungs, hearts and muscles (Kuehl et al., 2020).  

S. aureus is armed with various types of virulence factors that support its 
pathogenicity and allow its evasion from immune system (Haddad et al., 2018). 

Expression of virulence factors genes in S. aureus is controlled by global 

regulators such as Agr, SarA, Rot and MgrA (Jenul & Horswill, 2019). SarA is a 
124 amino acid long winged helix protein encoded by sarA locus, which is 

composed of three overlapped transcripts (sarA P1, sarA P3 and sarA P2). It is 

encoded by a 372 bp sarA open reading frame (ORF) that forms the final SarA 
protein form (Liu et al., 2006; Cheung et al., 2008). SarA is known to regulate 

the expression of about 120 genes, of which 76 genes are upregulated, while 44 

genes are downregulated either by direct DNA binding or by indirect pathways 

(Liu et al., 2006; Jones et al., 2008). Murine models infected with sarA mutant 

S. aureus strain showed a suppressed virulence pattern, and reduced susceptibility 
to septic arthritis and osteomyelitis. Moreover, these models revealed that sarA 

mutant strain was less likely to produce biofilm, and therefore was more 

susceptible to antibiotics (Gordon et al., 2013). 
Our findings in this study demonstrated that proteases levels [staphylococcal 

serine protease (SspA), metalloprotease (aureolysin; Aur), staphopain (ScpA) and 

cysteine protease (SspB)] were increased in the sarA mutant strain when 
compared to the wild type and revertant strains. This was found to be accordant 
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to Zielinska et al., (2012), Atwood et al., (2015), Kong et al., (2016) and Rom 

et al., (2017). Our results also were found to be accordant with the findings of 

Karlsson & Arvidson, (2002), Pragman & Schlievert, (2004) and Arya & 

Princy, (2013), who found that increased sarA expression leaded to a decrease in 
the proteases levels.   

In contrast to proteases, the genes encoding for lipases namely, lip1 and lip2, 

were found in our study to be downregulated upon the sarA mutation. These 
findings are similar to those that were found by Blevins et al., (2002) and 

Pragman & Schlievert, (2004). 

Furthermore, the staphylokinase cofactor encoded by sak was noticed to be 
upregulated in response to the sarA mutation. This result is found to be in 

agreement with Ziebandt et al., (2001) and Pragman & Schlievert, (2004), who 
found that SarA downregulated staphylokinase production. 

Moreover, hyaluronidase was found in higher levels in the staphylococcal sarA 

mutant strain in comparison to the wild type and revertant strains. Our finding 
was similar to Hart et al., (2013) and Factor, (2014), who found that 

hyaluronidase expression increased in the sarA mutant strain as compared to the 

wild type strain. 

CONCLUSION  
 

To sum up, SarA increased the lipase production. On the other hand, 

staphylococcal serine protease, metalloprotease, staphopain protease, cysteine 
protease, staphylokinase and hyaluronate lyases were found to be downregulated 

by SarA. Therefore, it can be concluded that SarA is an important global 

regulator that controls the expression and production of many toxins in S. aureus. 
Our data support previous literature that SarA may act either as a positive 

regulator (may be through increasing the stability of mRNA of the genes) or a 

negative regulator (may be through decreasing the transcription of target genes) 
or may act through other regulatory mechanisms in S. aureus (Figure 5). This can 

open the door to set novel therapeutic approaches, targeting SarA, for the 
treatment of certain bacterial infections and help in tackling the overwhelming 

problem of antibiotic resistance. This can be achieved through using either new 

key inhibitors or modulators of SarA to control the production of virulence 
factors that are responsible for the clinical characteristics of each infection. 

 

 
 

Figure 5 Proposed action of SarA as a global regulator in S. aureus. SarA may act either as a positive regulator (may be through 

increasing the stability of mRNA of the genes) or a negative regulator (may be through decreasing the transcription of target genes) 
or may act through other regulatory mechanisms. 
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