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INTRODUCTION 

 

Recently, concerns about the environmental pollution caused by plastics have led 

to attempts to produce biodegradable films using degradable components (Pérez‐

Gago and Krochta, 2001). Edible films and coatings from biopolymers are 

biodegradable, non-toxic, environmental-friendly and in many occasions, they 
made with by-products obtained from food industry. Hence, they are good 

choices for the plastic packaging alternatives (Rodriguez et al., 2013). The 

expansion of recyclable films and coatings has received the most consideration 

since it results in the shelf life development of food (Alvarez-Prez et al., 2015). 

The major components of edible films are proteins, polysaccharides and lipids or 

a combination of any of these macromolecules (Atarés et al., 2010). Food 
proteins have been broadly used to make edible films, because the films prepared 

by proteins have better mechanical and barrier characteristics as compared to 

polysaccharides- and lipids-based films (Tang and Jiang, 2007).  Amongst 
different proteins used in the edible film production, whey is one of the most 

favorable packaging materials (Schmid et al., 2012). Whey proteins are widely 

used in food industry in the various forms such as whey protein isolate (WPI), 
whey protein concentrate (WPC), whey protein hydrolysate (WPH) and 

fermented whey protein concentrate (FWPC) (Jooyandeh and Minhas, 2009). 

These ingredients have excellent functional and nutritive properties (Jooyandeh 

et al. 2009). However, statistics indicates that solely in Europe 20 million tons of 

whey produced are disposed annually (Bugnicourt et al., 2010). Therefore, 

numerous food researches focused on whey and whey derivatives as a crucial 
ingredient in food products and introduced its further applications. Many 

researches have been carried out to produce edible films or coatings constructed 

with whey proteins (Pérez‐Gago and Krochta, 2001; Osés et al., 2009; Ramos 

et al., 2012; Soazo et al., 2013; Kouravand et al., 2016). Although edible films 

based on whey proteins have a good mechanical and oxygen barrier properties, 

their inadequate water vapor permeability and lower mechanical strength have 
limited their application in food packaging (Miller and Krochta, 1997; Seydim 

and Sarikus, 2006). Among different methods to improve mechanical resistance 

and barrier properties of protein films, treatment with microbial transglutaminase 
(MTG) seems to be safe and effective technique (Tang and Jiang, 2007).  

Transglutaminase-induced crosslinking treatment in different food proteins have 
enormously investigated (Jooyandeh et al., 2015; Kouravand et al., 2018). 

Polymerization of soy proteins (Jiang et al., 2007; Yildirim and Hettiarachchy, 

1998), whey proteins (Aboumahmoud and Savello, 1990; Eissa, 2004), casein 

(Færgemand et al., 1999), gelatin–calcium carbonate composite films (Wang et 

al., 2015) and fish protein (Rostamzad et al., 2016) using transglutaminase 
enzyme are some of these examples. The aim of present investigation was to 

evaluate the effect of MTG treatment at different enzyme concentrations on the 

structural and barrier characteristics of edible films based on whey protein 

isolate.  

 

MATERIALS AND METHODS  

 

Materials  

 
Whey protein isolate (WPI) containing 97.5% protein was acquired from Arla 

Food Ingredient (Denmark). Microbial transglutaminase (MTG, with activity of 

100 units per each gram of protein) was purchased from Ingredients BDF Natural 
Co. (Spain). Glycerol (as the plasticizer), Tween 80 and other chemicals were of 

analytical grade and were acquired from Merck (Darmstadt, Germany). 

 

Film Preparation  
 

Edible film samples were manufactured according to Tang and Jiang (2007) 
with a slight modification. For making film composition solutions, 5 g of WPI-

powder was dissolved in 100 mL distilled water and 2 g of glycerol was added as 

a plasticizer. Following the addition of glycerol, a magnetic stirrer (IKA RH 
Basic 2) for 30 min stirred the mixture. Thereafter, the protein solution was 

placed in a water bath at 80 °C and was stirred for another 30 min. Heat treatment 

of the whey proteins is essential for the formation of intermolecular disulfide 
bonds. This treatment also is necessary to obtain a flexible film via covalent and 

non-covalent cross-linking that retains its integrity at high moisture environments 

(Zinoviadou et al., 2010). Solutions then quickly cooled to 45 °C by ice water 
bath to avoid further denaturation. After cooling to 45 °C, MTG at the level of 0 

(as control film), 5, 10 and 15 units per gram of protein (U/g) added and solutions 
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incubated at 45°C for 1 h. Subsequently, to inactivate MTG enzyme, the 
solutions were heated at 85 °C for 10 min (De Carvalho and Grosso, 2004). 

After cross-linking, ultrasonication by ultrasonic bath (Elmasonic P 60H, 

Germany) was performed for degassing of the film solutions as described by 
Schmid et al., (2014). For making the film samples, the equal amount of 

solutions (̴ 70 ml) were dispensed into poly methyl methacrylate plates (PMMP) 

and the film samples were prepared after drying at ambient temperature for 48 to 
72 h. In this way, thickness differences between treatments were minimized. The 

casted dried films were separated from surface of PMMP and were placed in 

desiccator (25 ±2°C) with 50% relative humidity (RH) before analysis. 
Specimens of 2.54 × 7.5 cm rectangular strips used for tensile testing and 1 × 3 

cm2 for moisture content and water soluble fractions analysis. 

 

Film Thickness Measurement  
 
A digital micrometer (Mitutoyo No.293-766, Japan) was used to measure film 

thickness to the nearest 0.0001 mm (Tang and Jiang, 2007). Three random 

positions on the film measured and the mean value used in tensile strength 
calculations. 

 

Water content (WC) and Water Soluble Fractions (WSF)  
 

WC and WSF of the films were measured according to Ghasemlou et al., (2011). 

Film samples were weighed, and the percentage of WC of the films were 
assessed by calculating the weightiness of the films before and after oven drying 

(Heraeus, Germany). The WSF of the film samples were determined by soaking 

the dehydrated weighed films for 6 h in distilled water at ambient temperature 
under continuous stirring. After separation of the remained pieces of the films by 

filtration, the WSF was assessed as follows (Eq. 1): 

 

TSM (%) =
initial dry weight−final dry weight 

initial dry weight
× 100    (1) 

 

Water Vapor Transferability (WVT)  
 

WVT of the films was obtained using ASTM E96 standard method (2000). 
This method determines WVT of the film as it withstand against of mass transfer 

in vaporous phase. The specimens of the film were cut to match the cup mouth 
with a surface area of 0.00066 m2. The cups were contained anhydrous calcium 

chloride to reach 0% RH. The film was then fixed to the cup opening by 

parafilm. The cups were put into a desiccator with 75% RH (created by sodium 
chloride saturated solution at 25°C). This RH alteration amongst two edges of the 

films generates a vapor compression equivalent to 1753/55 Pa. After weighing up 

the cups regularly during 3 days, the slope of mass reduction against time was 
achieved by linear regression (R=0.99). Water vapor transmission rate (WVTR) 

was determined as follows (Eq. 2): 

 

WVTR=
𝑠𝑙𝑜𝑝𝑒

𝐴 
   (2)  

WVT was then measured via the subsequent calculation (Eq. 3): 

WVT=
𝑊𝑉𝑇𝑅×𝑋

∆𝑃
    (3) 

 

A is the exposed surface area of the film, X is thickness and ∆P is pressure 

difference amongst two edges of the film. 

 

Mechanical Properties  
 
Texture analyzer (TA.XT.PLUS, Stable Micro System, UK) was used to 

calculate the most important mechanical properties of the edible film samples, i.e. 

tensile strength (TS) and elongation at rapture (ER). WPI-films samples were 
assessed for TS and ER analysis by using ASTM D882-00 method (ASTM, 

2000) taking an average of three determinations for each sample. ER was 

measured by dividing the extension in length (elongation at the moment of film 
break) by initial gauge length expressed in percentage and TS value was 

expressed in mega Pascal (MPa) and was calculated as follows (Eq. 4): 

 

TS =
Maximum force

Film thickness × Film width   
    (4)  

 

Film Microstructure   
 

Microstructure of the films were evaluated by using scanning electron 

microscopy (SEM, Philips XL30, Netherlands). WPI-based films were immersed 
in liquid nitrogen for fracturing and were mounted onto aluminum stubs and were 

coated with gold by using a sputter coater (SCD 050, Bal-Tec®, Switzerland). 
The SEM (Shojaee-Aliabadi et al., 2013) was used to observe the surface and 

cross-section microstructure of the films. 

 

 

 

 

Fourier-Transform Infrared (FT-IR) Spectroscopy 

 

FT-IR was used to determine molecular weight variations of WPI-based edible 

films treated without enzymatic treatment (control) and treated with 10 U/g MTG 
and to observe protein interactions. This level of MTG enzyme concentration was 

selected on the base on film characteristics obtained from experimental results. 

FT-IR was performed by using Fourier-Transform Infrared spectrometer (Bruker 
Instrument, France) according to Jooyandeh et al., (2018). Spectra were 

measured at 500 to 4,000 cm−1. The FTIR spectrometer was attached with 

potassium bromide beam splitter, MICOR-ID sample changer compartment and 
deuterated triglycine sulfate detector. One mg of the film sample was milled with 

300 mg of potassium bromide and pressed into a pellet (1 mm thickness and 13 
mm diameter) for transmission infrared spectroscopy (Jooyandeh et al., 2018). 

Each spectrum was the averaged value of 20 scans in a transmittance mode. The 

spectra attained were deducted to attain the pure protein spectrum and the curve-
fitted spectra were depicted for further analysis. 

 

Statistical Analysis  
 

Data were analyzed by one-way ANOVA analysis by using SPSS (version 20.0) 

software. Duncan's comparison test with a 95 % confidence level was used to 
determine statistically meaningful variations between the means. 

 

RESULTS AND DISCUSSION    

 

Film Thickness  
 
Thickness of the films is listed in Table 1. As expected, thickness of WPI-films 

were affected by MTG treatment. Treated films with 10 and 15 U/g MTG had a 

significantly higher thickness as compared to the control and the film contained 5 
U/g MTG (Table 1). By increasing enzyme concentration from 5 to 15 U/g, 

thickness of the films increased significantly from 0.101 to 0.120 mm (p<0.05). 

The same results have been reported by Tang et al., (2005) who investigated the 
impact of transglutaminase on the properties of SPI films. On the contrary, 

Tang and Jiang (2007) reported that modification by MTG (8 U/g) did not 

significantly affect the thickness value of edible films prepared from WPC 

(containing 84.7% protein).  

 

Water content and Water Soluble Matter  
 

Water content (WC) and water soluble fractions (WSF) of the films are shown in 

Table 1. Modified films had lower WC as compared to control film and this value 
for MTG treated films decreased by 20.66% as the enzyme concentration 

enhanced and reached to 15 U/g. Jiang et al., (2007) have similarly reported that 

soy protein isolate (SPI) -based films treated with 10 U/g had significantly higher 
WC (21.6%) than control film (23.5%). As it is shown in table 1, the impact of 

MTG quantity on the WSF of the WPI films was multifarious. By increasing the 

MTG concentration from 5 to 10 U/g, WSF values of the films decreased 
meaningfully (p < 0.05) from 38.37% for control to 19.97% for sample 

containing 10 U/g MTG. However, the treatment with more MTG concentration, 

i.e. 15 U/g of enzyme contrarily increased the WSF value to some extent 
(P>0.05). In order to determine the effect of cross-linking of proteins by MTG, 

several investigations have been carried out and reported the reduction of WSF in 

the films because of MTG modification (Yildirim and Hettiarachchy, 1998; De 

Carvalho and Grosso, 2004; Jiang et al., 2007; Weng and Zheng, 2015; 

Rostamzad et al., 2016). The decline in the WSF value of the treated MTG films 

is possibly due to an increase in the molecular weight of protein fractions caused 
by increasing the degree of cross-linking and formation of new intra- and 

intermolecular protein's bonds (Carvalho and Grosso, 2004). However, as 

mentioned above, treated film with the highest enzyme concentration (15 U/g), 
had slightly (p>0.05) higher WSF value than sample containing 10 U/g MTG 

enzyme. These findings are in agreement with the data reported by Jiang et al., 

(2007) who also showed that the treatment with over 10 U/g MTG on the 
contrary increased WSF values of SPI films and treated films with higher than 20 

U/g MTG had even higher WSF than control.  

 

Water Vapor Transferability (WVT)  
 
Water vapor transferability (WVT) of the films is listed in Table 1. Many 

parameters can affect the water vapor transferability/permeability of films, such 

as the degree of plasticization (Jooyandeh 2011), film configuration (Pérez‐

Gago and Krochta, 2000) and the extent of cross-linking (Færgemand et al., 

1999). In general, the films based on proteins are inadequate water vapor barriers 

owing to the intrinsic high hydrophilicity of proteins and the considerable degree 
of hydrophilic plasticizers added to protein-based films (Yildirim and 

Hettiarachchy, 1998). The results of this study showed that treatment of WPI 

films with MTG significantly (p<0.05) improved WVT and sample treated with 
10 U/g MTG had lower WVT than control (2.31 vs. 3.57). However, at the higher 

enzyme concentrations, i.e. 15 U/g, the WVT of the film increased by 8.4%, 

though this change was not significant (p>0.05). In agreement with our study, De 
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Carvalho and Grosso (2004) for gelatin-based films, Wang et al., (2015) for 
gelatin-calcium carbonate composite films and Rostamzad et al., (2016) for fish 

protein films have reported lower WVT as the result of cross-linking by MTG. 

The slight increase in WVT of treated films at the higher enzyme concentrations 
may be due to additional pores caused by the higher protein cross-linkages 

(Yildirim and Hettiarachchy, 1998). In the other words, the increase in WVT of 

the MTG treated films caused by cross-linking reactions of proteins can result in 
the molecular orientation of proteins around themselves and formation of 

additional free space (Yildirim and Hettiarachchy, 1998).  

 

 

Table 1 Water content, water soluble fractions and water vapor transferability of 
WPI-based films cross-linked by MTG 

Water vapor 

transferability 

(× 10-10 g m-1 s-1 
pa-1) 

Water 

soluble 

fractions 
(%) 

Water 
content 

(%) 

Thickness 

(mm) 

Enzyme 
concentration  

(U/g) 

3.57 ± 0.16a 
38.37 ± 

4.05a 

28.90 ± 

0.62a 

0.097 ± 

0.003c 
0 (control) 

3.11 ± 0.33ab 
28.03 ± 

4.56b 

26.87 ± 

1.46a 

0.101 ± 

0.003c 
5 

2.31 ± 0.30c 
19.97 ± 

1.68c 
24.20 ± 
1.37b 

0.110 ± 
0.005b 

10 

2.61 ± 0.28bc 
22.13 ± 

1.60bc 

22.93 ± 

1.00b 

0.120 ± 

0.004a 
15 

Data are the average ± standard deviations. Different small letters indicate 
significant differences between all samples (p <0.05) 

 

Mechanical Properties  

 

The mechanical properties of the WPI-edible films are shown in Figure 1 and 2. 

Results showed that by increasing MTG concentration up to 10 U/g, the tensile 
strength (TS) of the films was increased significantly (p<0.05). However, at the 

higher amount of the enzyme, the TS value was slightly, but insignificantly 

decreased (p>0.05). These results are in agreement with the data reported by 
Motoki et al., (1984) for αs1-casein, Mahmoud and Savello (1993) for whey 

protein and Rostamzad et al., (2016) for fish protein who indicated the higher 

TS value in MTG treated films. Development of covalent iso-peptide linkages 

into the protein construction is the reason for the rising of TS value (Yildirim 

and Hettiarachchy, 1998). On the contrary, Tang and Jiang (2007) reported 
insignificant changes in TS values (2.2 vs. 2.3 MPa) of the WPC-based film 

treated with MTG as compared to control. They illustrated that intrinsic whey 

proteins are globular proteins and are considerably less vulnerable to MTG as 
compared to other proteins, such as sodium caseinate and SPI, causing MTG 

treatment to be uselessness to improve the TS of resultant films. 

Our results also showed that as the MTG concentration increased, the elongation 
at the rapture (ER) of treated films decreased significantly (p<0.05). This finding 

is in agreement with the data reported by Wang et al., (2015) studied the effect 

of transglutaminase on the properties of gelatin-calcium carbonate composite 
films. They observed that as the MTG concentration increased from 4 to 8 U/g, 

elongation at rapture/break value decreased significantly. De Carvalho and 

Grosso (2004) demonstrated that the lower ER value of enzymatically treated 
films is due to decreasing the mobility of the film matrix because of whey protein 

cross-linking. These researchers also reported the higher TS and the lower ER 

values for treated films by MTG as compared to control (without enzymatic 
treatment). Like the other film properties, the ER of the films at the highest level 

of MTG, i.e. 15 U/g, changed adversely and to some extent increased (Figure 2). 

Truong et al., (2004) reported similar results and declared that enzymatic 
treatment of whey protein films with a higher enzyme concentration undesirably 

led to the lower TS and higher ER values. The adverse mechanical behavior of 

the films treated at the highest MTG concentration (15 U/g) is probably due to 
the extensive intra- and inter-chain cross-linking formed by the enzyme. This 

extra polymerization causes an inappropriate network development, leading to 

the formation of weak gel (Truong et al., 2004). Jiang et al., (2007) also 
indicated that enzymatic treatment of SPI-based film with 4-10 U/g of MTG 

resulted in higher TS value; however, at the higher enzyme concentration over 10 

U/g, TS value was unfavorably diminished. 

 
Figure 1 Effect of treatment with MTG on tensile strength of the films 

 
 

 
Figure 2 Effect of treatment with MTG on elongation at rapture (%) of the films 

 

Film Microstructure   
 

The scanning electron microscopy (SEM) micrographs of the surface and the 

cross section of WPI films treated by different concentrations of MTG are 
presented in Figure 3. As compared to the control film, the enzymatic-treated 

films with 5 and 10 U/g of enzyme had more compact cross-section and a smooth 

texture without any cracks.  
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Figure 3 SEM micrographs of cross linked WPI-based edible films treated with 
different MTG enzyme concentrations; 0 U/g as control (a: cross-section; b: 

surface), 5 U/g (c: cross-section; d: surface), 10 U/g (e: cross-section; f: surface), 

and 15 U/g (g: cross-section; h: surface) 

 

These findings are in agreement with the data reported by Tang et al., (2005) 

who observed that the cross-section of SPI-films treated by MTG exhibited 
compact microstructure. This could explain the lower WSF, WVT and ER of 

MTG-treated films. The same results stated by Mariniello et al., (2003) who 

found that the MTG treated films prepared from pectin-soy flour had a smooth 
appearance and homogeneous structure. However, as it is shown in Figure 3, the 

film treated by 15 U/g MTG had heterogeneous and uneven surface. The bumpy 

surface of this film as compared to other MTG-treated films are attributed to the 
extensive protein cross-linkages and formation of massive polymers that are 

unsuccessful to develop an appropriate protein network (Truong et al., 2004). 

This irregular film construction caused a loss of net integrity and subsequently 
resulted in the lower ER as compared to the lower MTG enzyme concentrations 

(Figure 2). Wang et al., (2015) also reported that with increasing the MTG 

concentration, the gelatin–calcium carbonate composite films showed a rough 
and uneven surface.  

 

FT-IR Spectroscopy  

 

Proteins contain several configurations such as α-helix and β-sheet which are the 

most common secondary structural elements of protein. FT-IR spectroscopy is a 
major device to estimate protein secondary structures (Kong and Yu, 2007). 

Proteins are consisting of amino acids associated together by amide linkages. As 

it is shown in Figure 4, regarding to FT-IR analysis, there were substantial 
differences (p<0.01) in the amount of protein linkages between control and film 

samples treated with MTG enzyme. The spectra for films showed that the band 

was formed by different separable peaks; situated as amide-III (1200 to 1300 

cm−1), amide-II (1500 to 1600 cm−1) and amide-I (1600 to 1700 cm−1). Amid-I 

region of FT-IR spectra shows stretching vibrations of C=O and C–N groups and 

is straightly related with protein secondary buildings (Kong and Yu, 2007) while 
amide-II region represents N−H bending. These absorption bands, are confirmed 

the polypeptide and protein structure units. MTG treated films had the higher 

protein linkages than control film. MTG enzyme is an enzyme that catalyzes 
cross-link bio-molecular interactions thorough intra- and inter- linkages, resulting 

in a higher covalent connection and strengthen the protein network. Our findings 
are in agreement with the data reported by Wang et al. (2019) who observed 

similar FT-IR spectra for edible coatings prepared with using whey protein 
isolate. 

 

 
Figure 4 FT-IR spectra of WPI-based edibel films without enzymatic treatment 

(red curve) and treated with 10 U/g MTG (blue curve) 

 

CONCLUSIONS 

 
Results showed that the properties of MTG-treated films were influenced by 

enhancing the enzyme concentration. The treatment with a lower concentration of 

MTG (5–10 U/g) significantly increased the tensile strength (TS) and decreased 
elongation at the rapture (ER) values of WPI films (P≤0. 05). Furthermore, enzymatic 

treatment by MTG resulted in the lower water soluble fractions (WSF) content and 

water vapor transferability (WVT) rate as compared to the control film. The MTG-
treated films except the film treated by 15 U/g MTG had homogeneous and even 

surface. FT-IR analysis also revealed that treatment with 10 U/g of MTG enzyme 

enhanced the content of cross-linked proteins and thereby improved the edible film 
characteristics. These results suggest that the MTG cross-linking may uses as an 

efficient method to promote the mechanical and physical properties of WPI-based 

films. Overall, the best WPI film with the appropriate mechanical, structural and 
barrier aspects can be produced by using 10 unit MTG per g protein (U/g) and this 

biofilm meets all the requirements needed for food packaging.  
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