CHARACTERIZATION OF WHITE SESAME SEED OIL AND ITS BIOACTIVE COMPONENTS

Farhan Aslam1, Sanaullah Iqbal1*, Muhammad Imran2, Aftab Ahmad Anjum3, Syed Amir Gilani2, Zubair Farooq1, Hafiza Bushra Tariq1, Sergei Terentiev6, Anna Terekhova7, Mohammad Ali Shariatymohammadali@gmail.com

Address(es):
1 Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore Syed Abdul Qadir Jillani (Out Fall) Road, Lahore – Pakistan.
2 University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan.
3 Department of Microbiology, University of Veterinary and Animal Sciences, Lahore Syed Abdul Qadir Jillani (Out Fall) Road, Lahore – Pakistan.
4 Institute of Agricultural Sciences, University of the Punjab Lahore - Pakistan.
5 Smolensk State Agricultural Academy, Smolensk, Russian Federation.
6 K.G. Razumovsky Moscow State University of technologies and management (the First Cossack University), Moscow, Russian Federation.

*Corresponding author: sanaullah.iqbal@uvas.edu.pk, Shariatymohammadali@gmail.com

ARTICLE INFO

Received 15. 9. 2020
Revised 30. 12. 2020
Accepted 5. 1. 2021
Published 1. 6. 2021

Regular article

ABSTRACT

The purpose of this study was to evaluate the physicochemical properties of white sesame seed oil (WSSO) (PB-Till 90) along with their bioactive components. Among physicochemical properties; free fatty acids (0.95 ± 0.05 %), peroxide value (0.88 ± 0.03 meq/kg), thiobarbituric acid value (0.045 ± 0.0 mg malonaldehyde/kg-oil), free radical scavenging activity (DPPH) (85.07 ± 0.01 %), and iodine value (113.4 ± 1.46 g/100g) were observed. Fatty acid (%) profile, determined by gas chromatography, mostly comprised of unsaturated fatty acids. Bioactive components were determined using HPLC and include tocopherol mg/kg (±8.12 ± 0.0, ±23.98 ± 0.02), ω-3,125 ± 0.01, polyphenol mg/kg (Gallic acid 0.985 ± 0.001, protocatechuic acid 0.018 ± 0.001, syringic acid 0.024 ± 0.002, ferulic acid 0.134 ± 0.001), stigmasterol 6689.34 ± 0.02 and lignans mg/g (sesamin 18340 ± 8.5, sesamolin 28340 ± 13.7 and sesamol 224 ± 2.0) were quantified. The results show that WSSO from variety PB-Till 90 has good physicochemical properties and contain appreciable quantities of bioactive components to make its usage as a functional food ingredient.

Keywords: Bioactive components, Fatty acid profile, Physicochemical properties, Sesame oil

INTRODUCTION

As a result of research interventions, the concept of nutraceutical and functional foods has flourished. Now, consumers have started to look at food not only for its basic nutrients but also for its health benefits. Now it’s the responsibility of nutritionists and researchers to emphasize their concentration towards health claims and safety issues of new foods. The major emphasis of these foods is on recuperating health and minimizing disease threat mainly through prevention. White sesame (Sesamum indicum) has its origin in India and roots in the history from more than 5000 years ago, belongs to the family Pedaliaceae and is considered as among one of the oldest crops on the planet (Bisht et al., 1998). Sesame has given the name of “queen” of oil seed crops because of the superb quality of oil that enhances by α-tocopherol (Ogawa et al., 1995). Its consumption significantly increased the level of vitamin E in animals and helps to reduce the oxidative stress (Kamal-Eldin et al., 1995; Yamashita et al., 1992). Diabetes, migraines and hepatitis like chronic diseases have been treated with sesame seed oil in the recent years (Anilkumar et al., 2010). The lower quantity of saturated fat and higher quantity of monounsaturated and polyunsaturated fatty acids (PUFA) makes the white sesame seed oil (WSSO) suitable for daily consumption. On the other hand, sesamin and sesamolin are the major phenolic lignans found in sesame oil ranges from 1.0–2.0% (Reshma et al., 2010) and these have proven beneficial effects as they serve as an antioxidant, antihypertensive, anti-mutagenic, anti-inflammatory and antithrombotic and cardioprotective effects (Kaneez et al., 2007). White sesame variety PB Till-90 is one of the important and majorly grown sesame variety in Pakistan and has not been characterized especially for its nutritional value and other health benefits in detail. It is the reason that sesame oil utilization is not much in our routine life. Sesame seed oil is among one of the few vegetable oils that can directly be used without refining. The stability of sesame seed oil is due to the presence of bioactive components in it like sesamin, sesamolin, and tocopherols (Chang et al., 2002). Its healthy aspects make it suitable to be used in different products and as a whole natural salad oil. The purpose of the study was to evaluate the WSSO for physico-chemical properties, fatty acid profile and bioactive components like tocopherol, polyphenol, phytosterol and lignans.

Scientific hypothesis

The scientific hypothesis of this study is mainly determined the chemical profiling, fatty acid composition of extracted white sesame oil along with their antioxidant potential. Further, by conducting these analyses which is used to enhance the biological value and also used to prepare the different quality products through white sesame oil.
MATERIAL AND METHODS
Materials, chemicals, standards and reagents
White sesame was procured from Ayub Agriculture Research Institute, Faisalabad, Pakistan. All chemicals, reagents, solvents and standards for bioactive components were of highest purity for laboratory analysis and were purchased from Sigma Aldrich-UK.

WSSO Extraction and Characterization
The WSSO was extracted from PB Till-90 seeds by solvent extraction method (Latif and Anwar, 2011) using n-hexane as organic solvent. After extraction by Soxhlet apparatus, oil was tested for various physical and chemical attributes including color, refractive index, specific gravity, smoke point and chemical characteristics like free fatty acids, peroxide value, thiobarbituric acid (TBA) acid value, iodine value, saponification value, unsaponifiable matter and free radical scavenging activity by following the procedures described in AOAC, (2003).

DPPH free radical scavenging activity
Free radical scavenging activity was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH), by adopting the method described by Baoz, Mimica-Dukic, Simin, and Anackov (2006). The absorbance was measured at 515 nm against blank. The percentage of radical scavenging activity (RSA) was calculated using the following equation:

\[RSA(\%) = \frac{A0 - As}{A0} \times 100 \]

where \(A0 \) is the absorbance of control and \(As \) is the absorbance of the sample at 515 nm.

Polyphenols
Polyphenols in sesame seed oil were determined by adopting the procedure of Istaiba et al. (2011). The residues were dissolved in acetonitrile and 10% acetic acid (50:50) and were analyzed by HPLC/ACPI-MS. The chromatographic separations were performed with column C18 (150 mm X 2.1 mm) 335 μm X tera (Waters) and guard column C18 (4mm X 2 mm) (Phenomenex, Cheshire, UK).

Fatty Acid Profile
Fatty acid methyl esters (FAMEs) of sesame seed oil were prepared using the standard IUPAC method (IUPAC, 1987) as described by Latif and Anwar (2011). Fatty acid methyl esters were then analyzed against standards (Sigma Aldrich-UK) by gas chromatograph (model: 14-A, Shimadzu, Japan) using polar capillary column (SP-2330, 30m x 0.32mm) coated with methyl lignose, flame ionization detector and nitrogen gas as a carrier.

Tocopherols
The tocopherols (α, γ, and δ) were determined in sesame seed oil using High Performance Liquid Chromatography on UV detector at 295 nm following method explained by Latif and Anwar (2011).

Phytosterol
Sample preparation and analysis of phytosterols were performed by adopting the method of Ryan, Galvin, Connor, Maguire, and O’Brien (2006) with some modifications. The sample was loaded onto a column Luna C8 (2) (250 x 4.6 mm) Phenomenex, Cheshire, UK. All determinations were done at 205 nm for phytosterols.

Lignans (Sesamin & Sesamolin)
Lignans (sesamin and sesamolin) were analyzed by adopting the method of Schwertner and Rios (2012) with little modifications. The sample was injected into the HPLC (Model: Perkin Elmer series 200 USA) equipped with C18 (4.6mm x 150 mm). The UV detector was set at 288 nm. Sesamin, sesamolin and sesamol were quantified by comparing with standards Sigma Aldrich-UK.

RESULTS AND DISCUSSION
The physicochemical properties of crude WSSO are presented in Table 1. Colour of oil ranges from clear yellowish to slightly red, with results of 18.4 ± 0.2 yellow and 1.53 ± 0.153 red. Refractive index gives us an idea about rancidity and adulteration, the refractive index of sesame seed oil was (1.4598 ± 0.1), previously in an Indian variety it was reported 1.469 by Alyemeni et al. (2011), specific gravity is the ratio of density of a substance to the reference substance; water was the reference substance to measure the specific gravity. Sesame seed oil specific gravity was (0.9210 ± 0.00), the point at which the oil starts to burn is the smoke point, white sesame seed oil smoke point was 184 ± 3 °C. The free fatty acid is the % age of oleic acid in the oil that indicated the oxidation level of lipids, it is directly related to acidic composition of oil, sesame seed oil free fatty acid value was (0.95 ± 0.05 %).

Table 1 Physicochemical properties of sesame seed oil PB Till-90

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Physico-chemical Characteristics</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Colour Red</td>
<td>1.53 ± 0.153</td>
</tr>
<tr>
<td>2</td>
<td>Colour Yellow</td>
<td>18.4 ± 0.2</td>
</tr>
<tr>
<td>3</td>
<td>Refractive Index</td>
<td>1.4598 ± 0.1</td>
</tr>
<tr>
<td>4</td>
<td>Specific Gravity (g/cm³)</td>
<td>0.921 ± 0.1</td>
</tr>
<tr>
<td>5</td>
<td>Smoke Point °C</td>
<td>184 ± 3</td>
</tr>
<tr>
<td>6</td>
<td>Free Fatty Acid %</td>
<td>0.95 ± 0.05</td>
</tr>
<tr>
<td>7</td>
<td>Peroxide Value (mg/kg)</td>
<td>0.88 ± 0.04</td>
</tr>
<tr>
<td>8</td>
<td>Thiobarbituric Acid Value (mg malonaldehyde/kg-oil)</td>
<td>0.045 ± 0.1</td>
</tr>
<tr>
<td>9</td>
<td>Iodine Value % or g/100 gm</td>
<td>113.4 ± 1.46</td>
</tr>
<tr>
<td>10</td>
<td>Saponification Value (mg KOH/g)</td>
<td>189.7 ± 3.97</td>
</tr>
<tr>
<td>11</td>
<td>Unspontifiable Matter %</td>
<td>1.44 ± 0.03</td>
</tr>
<tr>
<td>12</td>
<td>Free Radical Scavenging Activity %</td>
<td>85.07 ± 0.01</td>
</tr>
</tbody>
</table>

The measurement of resistance against oxidation is the peroxide value, WSSO peroxide value was (0.88 ± 0.03 meq/kg) while thiobarbituric acid value is an important indicator of the oil quality because it tells about the rancidity of oil, sesame seed oil thiobarbituric acid value was (0.045 ± 0.01 mg malonaldehyde/kg-oil). The iodine value is the measurement of degree of unsaturation of fatty acids, higher value of iodine value shows that it is a semi dried oil and unsuitable to be used in paint industry before dehydration (Fernando and Akuboji, 1987). Iodine value of WSSO was (113.4 ± 1.46 g/100g), in one of the studies it was 107 g of I100gm, free radical scavenging activity (DPPH) is the measurement of inhibition of linoleic acid peroxidation, sesame seed oil (PB Till-90) showed DPPH activity as 85.07%, previously in one of the studies it was 62.2 µg/ml, saponification value is the measurement of chain length of fatty acids presents in it, higher proportion of it make it unsuitable to be used in soap industry, sesame seed oil saponification value was 189.7 ± 3.97 mg KOH/g, in one of the studies it was 169 mg of KOH/g of oil reported by (Latif and Anwar, 2011), unsaponifiable matter is the components in oil that fail to form soap, in our study it was 1.44 ± 0.03 %.

Fatty Acid Profile
Fatty acid profile of white sesame seed oil (PB Till-90) is shown in Table 2. The WSSO fatty acid profile includes capric acid C10:0 (10.9), lauric acid C12:0 (2.3), myristic acid C14:0 (2.9), myristoleic acid C14:1 (10.9), palmitic acid C16:0 (19.9), palmitoleic acid C16:1 (13.3), heptadecanoic acid C17:0 (19.5), stearic acid C18:0 (13.4), oleic acid C18:1 (11.4), linoleic acid C18:2 (12.9) and linolenic acid C18:3 (11.7). The major portion of present sesame seed oil comprised of PUFA i.e. 36.5% having oleic, linoleic and linolenic acids which are considered to be important in prevention of cardiovascular diseases (Vratanen et al., 2018). It is surprising that some sesame varieties contain saturated fatty acids (Table 2) and even myristic acid, palmitic acid and stearic acid are considered to be important oil sources for lignans (Asghar and Majeed, 2013) while others have more unsaturated fatty acids (oleic and linolenic acids) even up to 85% not only in Pakistan (Latif and Anwar, 2011) but in some sesame varieties in Congo as well (Nzikou et al., 2009). This composition makes some Pakistani varieties like PB-Till 90 more suitable for industrial applications due to more stability at high temperatures. It is also fact that palmitic and myristic acids are the fatty acids that raise the cholesterol level in consumer as reported by Zock et al. (1994). In PB Till-90 major saturated fatty acids found were palmitic acid and stearic acid. Similar results for fatty acid profile of sesame seed have been reported in previous studies (Asghar et al., 2013; Nzikou et al., 2009).

Bioactive Components
Results for bioactive components in sesame variety PB-Till 90 are presented in Table 3 Tocopherol contents in sesame seed oil were (α 8.12 mg/kg, δ 23.98 ± 0.2 mg/kg, β 23.98 ± 0.2 mg/kg, γ 3.125 ± 0.01 mg/kg), while sesamin and sesamolin were the major fat soluble lignans, sesamin 18340 mg/kg, sesamolin 28340 mg/kg and sesamol 224 mg/kg (Table 3). The most important oil sources for lignans are flaxseed and sesame seed oils (Peterson et al., 2010; Reshma et al., 2010) and it is evident from several studies that they play very important role in management of cardiovascular diseases (Peterson et al., 2010). It is the reason that several efforts have been done to improve the extraction process of lignans from edible oil sources (Latif and Anwar, 2011; Reshma et al., 2010). The present sesame variety i.e. PB Till-90 is an excellent source of sesamin and sesamolin. Higher contents of tocopherol in oil increase the oxidative stability of the oil. Latif and Anwar (2011) reported tocopherol levels as α 2.4 mg/kg, γ 578 mg/kg, δ 3.7 mg/kg using solvent extraction method and it can be improved using enzyme-
assisted extraction. PB Till-90 polyphenol contents were Gallic acid 0.985 ± 0.001 mg/kg, protocatechuic acid 0.018 ± 0.001 mg/kg, syringic acid 0.024 ± 0.002 mg/kg and ferulic acid 0.134 ± 0.001 mg/kg. The presence of polyphenols was supported by the studies of Borchani et al. (2010), they reported polyphenols as 14.21 mg caffeic acid kg⁻¹ of the raw sesame oil. Presence of polyphenols also enhance the antioxidant activity.

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Fatty Acids</th>
<th>Results (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Caprylic Acid</td>
<td>8.12 ± 0.0</td>
</tr>
<tr>
<td>2</td>
<td>Capric Acid</td>
<td>23.98 ± 0.02</td>
</tr>
<tr>
<td>3</td>
<td>Lauric Acid</td>
<td>3.125 ± 0.01</td>
</tr>
<tr>
<td>4</td>
<td>Myristic Acid</td>
<td>0.985 ± 0.001</td>
</tr>
<tr>
<td>5</td>
<td>Myristoleic Acid</td>
<td>0.018 ± 0.001</td>
</tr>
<tr>
<td>6</td>
<td>Palmitic Acid</td>
<td>23.98 ± 0.02</td>
</tr>
<tr>
<td>7</td>
<td>Palmitoleic Acid</td>
<td>13.4</td>
</tr>
<tr>
<td>8</td>
<td>Oleic Acid</td>
<td>11.4</td>
</tr>
<tr>
<td>9</td>
<td>Linoleic Acid</td>
<td>12.9</td>
</tr>
<tr>
<td>10</td>
<td>Linolenic Acid</td>
<td>11.7</td>
</tr>
<tr>
<td>11</td>
<td>Erucic Acid</td>
<td>10.9</td>
</tr>
<tr>
<td>12</td>
<td>Behenic Acid</td>
<td>10.1</td>
</tr>
<tr>
<td>13</td>
<td>Sesamolin</td>
<td>10.1</td>
</tr>
<tr>
<td>14</td>
<td>Sesamolin</td>
<td>224.0 ± 2.0</td>
</tr>
</tbody>
</table>

Table 2 Fatty acid profile of sesame seed oil PB Till-90

Phytosterols, primarily β-sitosterol, campesterol and stigmasterol, are membrane constituents of plants that effectively reduce serum LDL cholesterol and atherosclerotic risk (De Jong et al., 2003). In our study stigmasterol was detected in the sesame seed oil that was 6689 ± 0.02 mg/kg. The presence of phytosterol was also supported by Ryan et al. (2007) and they detected stigmastanol content in sesame oil as 41.5 mg/100g. Lignans (sesamin, sesamolin and sesamol) are the oxidative coupling product of β-hydroxyphenylpropane (Fukuda et al., 1986). These compounds increase the oxidative stability of the oil. Sesame seed oil has sufficient quantities of fat soluble lignans (Schwertner & Rios, 2012). It is cleared from the results that WSO PB-Till 90 characterization and especially the presence of sufficient quantities of components like tocopherol, polyphenol, phytosterol and lignans make sesame seed oil distinguished from other vegetable oils and make it suitable for human consumption.

Acknowledgement /Research Funding: This work was supported by the Higher Education Commission, Islamabad under Indigenous PhD Fellowship for 5000 Scholars (Phase-II) to Farhan Aslam.

REFERENCES

