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INTRODUCTION 

 

Averagely 165 million 60 kg bags of coffee are produced every year, meaning that 

coffee is one of the most sought beverages, especially in the western world, and 
the second most traded commodity in the world market. Coffee quality is defined 

by chemical composition and organoleptic properties. The final quality of green 

beans and the content of the chemical substances can be affected by various 
reasons, e.g., coffee species, altitude, soil composition, variations of temperature, 

thus mainly by the geographical region of the growing area (Kathurima et al., 

2000; Musanto et al., 2011; Fassio et al., 2017). Based on these facts, several 
scientific studies have focused on the effect of environmental factors, such as 

growing altitude, shade, and harvest period, on coffee plants' quality, biochemical 
and chemical composition (Toleso et al., 2016). 

Coffee beans, as a plant material, may contain almost a thousand different chemical 

compounds and isomers. As it was reported, green coffee has a complex 
composition. The main compounds are polysaccharides, monosaccharides, lipids, 

sterols, fatty acids, phenolic acids, polyphenols, alkaloids, proteins, free amino 

acids, vitamins, and minerals. Moreover, great attention is paid to substances with 
an antioxidant effect (e.g., chlorogenic acids and their isomers, hydroxycinnamic 

acids, caffeine, caffeic acid, phenolic compounds, and others). These can scavenge 

free radicals and thus protect the body from oxidative stress  (Yılmaz et al., 2014; 

Semen et al., 2017). Undoubtedly, the vast popularity of coffee strongly correlates 

with its sensory properties, primarily characteristic of aroma and flavor. Certain 

volatiles, named as the key components, are responsible for the final sensory 
properties. The main components of green coffee were identified as isoamylalcohol 

(10.4%), hexanal (10.4%) and hexocosane (8.2%), while furfurylalcohol (13.6%), 

furfurylacetate (10.7%), and 5-methyl furfural (9.27%) were identified as the main 
components of the roasted coffee (Poyraz et al., 2016). Used HS-SPME-GC-MS, 

was able to quantify different volatile compounds like alcohols, aldehydes, 

ketones, pyrazines, pyridines, and furans in green and roasted coffee beans, which 
belong to different chemical classes. However, given applied temperature and time, 

the concentration of volatile compounds in roasted coffee can undergo dramatic 

changes depending on the thermal profile applied during the roasting process and 
strongly depends on the green coffee bean composition (Caporaso et al., 2018). 

Given world-wide consumption and common illegal practice in whole food 

industry, it was necessary to create approaches and analysis suitable for the 
authentication of coffee (Toci et al., 2015). Specific analytical techniques are used 

to identify possible adulteration of coffee. However, recently technique of 

fingerprinting or profiling, which is represented by the targeted identification of 
specific compounds or metabolites combined with the adequate combination of the 

statistical approach, may show a vital conclusion regarding the authentication 

process (Suoto et al., 2015). 
The main aim of our research was to study the profile of volatile compounds in 

green beans of Coffea arabica from various geographical regions from Africa, 
Central America, and South America repeatedly for 2 harvesting years. And based 

on the obtained profiles develop a statistical model using machine learning 

approaches, especially Linear Discriminant Analysis (LDA), and determine the 
impact of harvesting year on the possibility of authenticating the geographical 

origin of green C.arabica.  

 

MATERIAL AND METHODS 

 

Material 

 

Samples of green Coffea arabica were purchased from Barzzuz (Banská Bystrica, 

Slovakia). The company focuses on importing and processing coffee from various 
well-known producers. Eighteen samples originating from Africa, Central 

America, and South America (the origin of samples was proved by the certificated) 

were analyzed. The first group of samples (group A) were harvested in 2019, rest 
for a year, and were analyzed in 2021. The second group (group B) was harvested 

in the same regions in 2018, rest for a year, and then were analyzed in 2020. A 

detailed description of samples is shown in Table 1, and the geographical range is 
shown in Figure 1. 

 

 

 

 

 

 

Authentication of coffee is highly required. This study aimed to understand the relative abundance of volatiles of green coffee harvested 

during two years. Using volatiles (GC-MS) and Linear Discriminant Analysis, we focused on the geographical origin identification. We 

analyzed samples of green Coffea arabica from Africa, Central America, and South America, harvested in 2018 and the same samples 
harvested in 2019. A total of 215 different volatiles were detected. Based on their chemical structure and the functional chemical group, 

they were divided into categories: furan derivates, aldehydes, ketones, alcohols, organic acids, hydrocarbons (alkanes, alkenes, alkynes, 

aromatic hydrocarbons), terpenoids, heterocyclic compounds, nitriles, amines. Green Arabica contained mostly organic acids and esters, 
aldehydes, hydrocarbons, and alcohols. We observed significant differences in aromatic hydrocarbons and furan derivates by comparing 

the volatiles profiles of African coffee beans collected in 2018 and 2019. The profile of Central American samples (both years) was 

homogenous; thus, no significant differences were observed. The aroma profile of South American coffees had significant differences in 
aromatic hydrocarbons and alkanes (p-value < 0.05). Rao’s approximation and Bartlett’s test proved a significant difference between 3 

continents by applying LDA. More than 94% of the variability between Africa, Central, and South America coffees harvested in 2018 was 

explained by organic acids and esters, alkenes, aldehydes, and ketones. By adding samples from 2019, LDA calculations reduced input 
parameters to aldehydes and ketones, organic acids and esters, alkenes, terpenoids, and aldehydes. These appear to be useful for 

geographical authentication regardless of the year of harvesting. 

ARTICLE INFO 

Received 12. 11. 2021 

Revised 23. 9. 2022 

Accepted 3. 11. 2022 

Published 1. 12. 2022 

Regular article 

https://doi.org/10.55251/jmbfs.5407 

http://www.fbp.uniag.sk/
mailto:xdemianova@uniag.sk
https://www.sciencedirect.com/science/article/pii/S0308814616312092#b0080
https://doi.org/10.55251/jmbfs.5407


J Microbiol Biotech Food Sci / Demianová et al. 2022 : 12 (3) e5407 

 

 

 

 
2 

 

  

Table 1 Description of analyzed samples of green Coffea arabica 

ID Continent Country Variety Processing Region Altitude (mamsl) 

1 Africa Burundi B W Kayanza 1700–1800 

2 Africa Rwanda K,B W Gasetsa 1500–1700 
3 Africa Ethiopia H W Yigacheffe 1700–2000 

4 South America Columbia C1,B,T W Multiple 1200–2000 

5 South America Brazil B PN São Sebastião da Grama 1150–1350 
6 South America Peru B,C1 W SHB Monte Verde Amazona 1400–1800 

7 Central America Costarica C1 W San Rafael Tarrazu 1200–2000 

8 Central America Guatemala B W Antigua Guatemala, Sacatepequez 1450–1800 
9 Central America El Salvador B W Apaneca 1250 

Note: Variety: B – Bourbon, C1 – Caturra, G – Geisha, H – Heirloom, K – Kent, T – Typica, W (washed, wet processed), PN - pulped natural; mamsl-meters above mean 

sea level  
 

 
Figure 1 Geographical range of analyzed samples  

 
Determination of volatile compounds using gas chromatography (GS-MS) 

 

Twenty grams of homogenized green coffee beans were put into 40 mL glass vials 
with septum Archon caps ptfe/sil. The samples was warmed up to 35 °C for 15 

minutes in Metaltermoblock Liebisch Labortechnik. Self-sorption was performed 

with Fiber: Carboxen®/PDMS (CAR/ PDMS) 2 cm, time 30 minutes at 35 °C, 

followed by GC-MS analysis. Volatiles were determined according to method 

previously described in Sádecká et al., (2014) with modifications. The Agilent 

Technologies 6890 gas chromatograph (Agilent Technology, Palo Alto, USA) 
equipped with an Agilent Technologies 5973 selective inertial detector (MSD). 

Volatiles were separated using a J&W 122-7333 DB-WAXetr 30 m x 0.25 mm x 

0.5 μm capillary column. The carrier gas was helium. The injector temperature was 
set to 250 °C. The oven temperature was programmed to be isothermal at 50 °C 

for 1 minute, then heated to 250 °C at a rate of 5 °C.min– 1. Input parameters were 

as follows:  splitless mode, initial temperature: 250 °C, pressure: 88.9 kPa, flow 
rate: 20.0 mL.min-1, cleaning time: 1.00 min, total flow rate: 24.6 mL.min-1. 

Electron ionization (EI) was set to 70 eV. The transfer line temperature and ion 

source temperature were 280 °C. The mass spectrometer collected data in full scan 
mode. Identification was performed by comparing the target compounds' mass 

spectra and chromatography data with reference materials in the NIST 14 library. 
 

 

 
 

Statistical Analysis 

 
For the summarizing and describing of our results descriptive statistic was used. 

To discover any possible significant differences within selected geographical 

groups of green coffee beans, ANOVA Duncan test and REGWQ was used. This 
statistical analysis was performed using Microsoft Office Excel 365 for iOS. 

Linear Discriminant Analysis was used to create a model that would be able to 

determine the geographical origin of single bean green Coffea arabica (XL Stat for 
iOS, Addinsoft), and Tanagra (Lyon 2 University Berges du Rhone Campus). 

 

RESULTS AND DISCUSSION 

 

Profile of volatiles in green coffee harvested in 2018  

 

Obtained volatiles were divided into several categories based on their chemical 

composition and functional group. Selected categories were furan derivates, 

aldehydes, alcohols, organic acids and their esters, terpenoids, hydrocarbons 
(separately divided into alkanes, alkenes, alkynes, and aromatic hydrocarbons), 

heterocyclic compounds, nitriles, ketones, amines. 

African samples showed that in 2018 the most abundant compounds were alcohols, 
organic acids and their esters, aldehydes, terpenoids, and aromatic hydrocarbons. 

These observations are in accordance with Tsegay et al., (2019), who reported that 
the most abundant groups in green coffee are alcohols and organic acids. Among 

organic acids, we observed mainly acetic acid; hexanoic acid; 2-butenoic acid; 3-

methyl-; pentanoic acid, and ethyl acetate. These reached the highest 
concentrations in the group. The most abundant alcohols were ethanol, 1-

penthanol; 1-hexanol; maltol; and 2,3-butanediol. Given that furan is considered a 

potential carcinogen and strict legislation is applied, furan derivates were evaluated 
separately. Our samples from Africa showed a concentration range from 3.26 – 

12.19%. This by far highest value was detected in a sample from Burundi, where 

furfural; 2- methyl furan; 3-methyl furan, and furan 2-methanol were abundant the 
most.  

On the other hand, furan derivates concentration of African samples harvested in 

2019 showed significantly different values (p-value < 0.05) ranging from 3.26 to 
5.61%, however, the highest concentration within the current year was measured 

again in the Burundi sample. The concentration of aromatic hydrocarbons was 

significantly higher in African coffees in 2019. In 2018, GC-MS detected mainly 
benzene, 1,3-dimethyl-; toluene; and o-xylene, however, only in minor 

concentrations. On the other hand, in 2019, this group reached 19.81%, containing 

mainly methylbenzene. Average concentrations of each chemical group are shown 
in Figure 2. 

 

 
Figure 2 Average values of each chemical group of volatiles regarding year of harvesting of green Coffe arabica from Africa. Note: B–year 2018, 

A–year 2019; significantly different values (P-value < 0.05) are marked with upper index* 
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Within South America green coffee, we observed that none of the selected 

chemical groups showed a significant difference (p-value > 0.05) in observed 

harvesting years (Figure 3). Procida et al. 2020 focused their research on the 

volatiles profiling of green Arabica coffee from various continents, including 

South America. They observed that 4-methyl-2,3-dihydrofuran, n-hexanol, 

limonene and nonanal, appear involved in the characterization of the geographical 
origin of the analyzed samples. Apart from 4-methyl-2,3-dihydrofuran, these were 

also identified in our samples. However, a direct comparison cannot be made given 

mentioned study did not focus on the robustness of these substances regarding the 
geographical origin during two years of harvesting.  

The last observed group was Central America. Comparably to African samples, 
ANOVA - REGWQ shows significant differences (p-value < 0.05) in average 

values of aromatic hydrocarbons. In 2018, this group had the highest 

concentrations in Costa Rica (17.67%), mainly methylbenzene (11.19%). The 
lowest concentration of aromatic hydrocarbons was detected in Guatemala 

(0.30%). In 2019 Guatemala, showed relatively similar values (0.71%), but Costa 

Rica contained only 0.37%, and methylbenzene was measured in minor 

concentrations. Another significant difference was in alkanes. Samples from 2018 

contained mainly pentane, 1-chloro-; butane, 1-chloro-, and undecane. Whereas 

samples from 2019 contained undecane, 5-ethyl- ; decane; and cyclopropane, 1,1-

dimethyl. Average values of the group are shown in Figure 5.  
Importantly, all three selected geographical groups showed the same pattern in 

volatiles profile regardless the year of harvesting. The highest concentration range 

was measured within alcohols, organic acids and esters, and other groups reached 
relatively similar concentrations, which indicates that the profile of volatiles may 

be stable enough in order to be used further in combination with an advanced 
statistical approach to develop a statistical model suitable for geographical origin 

identification of green Coffea arabica. 

 

 

 
Figure 4 Average values of each chemical group of volatiles regarding year of harvesting of green Coffea arabica from South America 

Note: B – year 2018, A – year 2019 

 

 
Figure 5 Average values of each chemical group of volatiles regarding year of harvesting of green Arabica coffee from Central America 

Note: B – year 2018, A – year 2019; significantly different values (p-value < 0.05) are highlighted red 

 

Even though the detection of volatiles is considered routine, geographical origin 
authentication of green coffee based on fingerprinting and advanced statistical 

approach is still limited, given that many are focused on roasted coffee (Caporaso 

et al., 2018). Ding et al., (2018) and Bobková et al., (2021) previously used 
Linear Discriminant Analysis (LDA) to distinguish the geographical origin 

of Cynomorium songaricum and Camelia sinensis from various countries. That 

indicates its possible use for other commodities in the food sector. LDA is a 

dimensionality reduction technique generally used to classify patterns between 

classes. LDA is a classifier used to find a linear combination of features, separating 

two or more data classes. The succeeding combination can be used as a linear 
classifier. This approach tries to maximize the between-class variance and 

minimize the within-class variance (Forina et al., 2009).  

Firstly, by applying LDA on the profile of volatiles detected in samples harvested 
in 2018, we observed that Bartlett’s test reached significant values (p-value < 0.05). 

The test represents the significance of the model and how well each function 

separates cases into groups and confirm that the within-class covariance matrices 
are different. Moreover, LDA proved that only two factors are needed to explain 

100% of the variability between three geographical groups. Variables 

representation shows which initial variables (groups of volatiles) are correlated 

with these factors. From Figure 6 is obvious that 94.22% of the variability is 

explained by alcohols, organic acids, ketones, aldehydes, and alkenes. The rest of 

the variables correlates with the F2 factor that represents 5.78% of the observed 
variability. Furthermore, LDA performed in Tanagra accordingly evaluated the 

most significant input parameters to be organic acids and esters (p-value = 0.07), 

alkenes (p-value = 0.0144), and ketones (p-value = 0.00025). 
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Figure 6 Variable and observations representation in LDA 

 

These data confirm that the groups are discriminated, and continents are well 
separated, especially African samples are clearly separated. However, on the LDA 

map (Figure 6) we see that Central and South American centroids tends to each 

other, which can be explained by the close geographical locality and similarity in 
climatic, environmental conditions, and altitude of growing areas.  

To observe the harvesting year's impact on the possibility of identifying the 

geographical origin of green coffee, we added samples harvested in 2019 to the 
LDA model. In this case, Rao's approximation and Bartlett's test reached 

significance (p-value < 0.05). This indicated that the model could distinguish 
selected continents on a significant level. As in 2018, the most significant 

parameter among all were ketones (p-value < 0.05). Nevertheless, in 2019, organic 

acids, alcohols, and alkenes parameters did not reach the same level. These 
previously significant parameters were substituted by aldehydes (p-value = 0.045) 

and terpenoids (p-value = 0.048). This indicated that year of harvesting; its climate 

conditions, respectively, may affect the volatile profile of green Coffea 
arabica. Bertrand et al. (2012) also confirmed that climate change, which 

generally involves a substantial increase in average temperatures in mountainous 

tropical regions, could impact the quality of coffee aroma, thus volatiles. 
To quantify the model's functionality. Given the number of samples, the leave-one-

out cross-validation was used. This process is repeated several times, always using 

different sample. As an output, the Confusion matrix for training samples, Cross-
validation of prior and posterior classification, and membership probabilities are 

calculated. The latter is a matrix that predicts the classification accuracy.  

In our study, the confusion matrix for training samples reached 100% accuracy of 
origin identification regardless of the harvesting year. According to the confusion 

matrix, LDA could identify all training samples in all three continents 

correctly. However, the Cross-validation of prior and posterior classification, and 
membership probabilities contained two miss-classified samples from Africa 

identified as South American coffee, one sample from South America identified as 

African coffee, and one misclassified sample from Central America identified as 
South American coffee. These results showed that the predict overall accuracy of 

the model was lowered to 77.78% (Table 2). 

 
Table 2 LDA Classifier performance of LDA using the whole profile of volatiles 

from \ to Africa 
Central 

America 

South 

America 
Total % correct 

Africa 4 0 2 6 66.66 

Central America 0 5 1 6 83.33 

South America 1 0 5 6 83.33 

Total 5 5 8 18 77.77 

 

Results indicates that not all input parameters are needed for the identification of 

geographical origin regardless the year of harvesting. Given this justified argument 
we re-run LDA using only organic acids and ester, aldehydes, ketones, alkenes, 

and terpenoids. In this case Rao’s approximation and Bartlett’s test verify the 

significance (p-value < 0.05). The Confusion matrix for training samples reached 
100% accuracy of origin identification regardless of the harvesting year. According 

to the confusion matrix, LDA could correctly identify all training samples in all 

three continents. But the Confusion matrix for the cross-validation results 
contained one miss-classified samples from Africa identified as Central American 

coffee, one sample from Central America identified as South American coffee. 

These results showed that the predict overall accuracy of the model was lowered 
to 88.89% (Table 3). 

 

 

 

 

 

Table 3 LDA Classifier performance of LDA using selected groups of volatiles 

from \ to Africa 
Central 

America 
South 

America 
Total % correct 

Africa 5 1 0 6 83.33 

Central America 0 5 1 6 83.33 

South America 0 0 6 6 100.00 

Total 5 6 7 18 88.89 

 

CONCLUSION 

 

Given coffee's popularity, geographical authentication of green beans is very 

required in the coffee industry. Our research showed that GC-MS analysis of 

volatiles provides sufficient information suitable for further statistical approaches. 
We observed significant differences in aromatic hydrocarbons and furan derivates 

by comparing the volatiles profiles of African coffee beans collected in 2018 and 

2019. The profile of Central American coffee beans from two years was 

homogenous. Thus, no significant differences were observed. The aroma profile of 

South American coffees showed significant differences in aromatic hydrocarbons 

and alkanes (p-value < 0.05). 
To create a model suitable for geographical origin identification, LDA was used. 

Analyzed samples from 2018 suggest that the most significant parameters among 

volatiles are organic acids and esters, alkenes, and ketones. According to LDA, 
these parameters explained most of the variability between African, South 

American, and Central American coffee. Coffee is a biological material; thus, the 

impact of harvesting years must be considered. Therefore, samples from the same 
growing areas harvested in 2019 were added to LDA model. The confusion matrix 

showed that training samples were correctly identified among all geographical 

groups regardless of the year's harvest. However, leave-one-out testing showed 
several misclassified samples that lowered the model's overall accuracy. 

Furthermore, based on LDA calculations we could reduce input parameters and 
determined organic acids and esters, alkenes, terpenoids, aldehydes, and ketones 

to be most useful for geographical authentication regardless the year of harvesting.  

Results showed that harvesting year might affect the volatiles profile of coffee. 
More importantly, samples from both years suggest that the group of ketones were 

the most significant parameters in geographical origin identification regardless of 

the year. Therefore, a more detailed investigation of ketones in green coffee is 
needed, given that group may contain individual markers suitable for origin 

identification that can simplify whole identification process.  
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