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INTRODUCTION 

 

Recently, nanobiotechnology has developed as a technology that is cutting edge 
multidisciplinary involving chemistry, physics, and biology (Boisselier and 

Astruc 2009; Kafshgari et al. 2015; Hassoun et al. 2022). Nanobiotechnology 

employs biosystems for example plant extracts, fungus, bacteria, and virus to 
synthesize economical, safe, and environmentally friendly nanoparticles (NPs) 

(Ahmad et al. 2005; Kakoti et al. 2022). Physicochemical, electrical, magnetic, 

and biological characteristics of nanomaterials with diameters ranging from 1 
to100 nm alter dramatically when compared to materials with larger scales 

(Morais et al. 2014). 

Bacteria are the most unique microorganisms in the extracellular biosynthesis of 

nanomaterials owing to their rapid growth, high efficiency, and ease of use when 

compared to other microorganisms and plants (Abbaszadegan et al. 2015). In 
contrast to intracellular biosynthesis, extracellular biosynthesis has lately gained 

popularity because of its simplicity and reduced time requirements with no further 

downstream processing (Balakumaran et al. 2016). Furthermore, nanomaterials' 
size and shape could be controlled by manipulating the concentrations of both 

silver ion and bacterial supernatant, pH value, incubation period, and temperature 

(Sathishkumar et al. 2010; Krishnaraj et al. 2012), as well as the presence of 
solar irradiation (Boopathi et al. 2012).  

Many researchers reported the extracellular bacterial biosynthesis of silver 

nanomaterials. Lactobacillus, Escherichia coli, and Pseudomonas aeruginosa have 
been documented as bionanofactories (Lengke and Southam 2006). L. garvieae 

and Enterococcus faecium were found in the biosynthesis of nanosilver (Sintubin 

et al. 2009). Silver (Ag) and silver nanomaterials have potent antimicrobial action 
against different pathogens (Baskaran 2013). However, nanosilver was reported 

to be higher efficient than bulk Ag (El-Dein et al. 2021), Ag nanomaterials are 

effective fungicides for Aspergillus terreus, A. niger, A.  flavus, Candida tropicalis, 
and C. albicans (Mallmann et al. 2015). One of the highly harmful fungi is the 

Aspergillus species. Many Aspergillus strains could release high vigorous 

mycotoxins called aflatoxins and ochratoxins that cause mould diseases on 
vegetables and fruits including apricots, onions, and peanuts (Abarca et al. 1994).  

The presented work aimed to biosynthesize and optimize reduced graphene 

oxide/silver nanocomposite (rGO/AgNC) and study its antimycotic action against 
A. flavus, A. fumigatus, and A. niger. 

MATERIALS AND METHODS 

 
Microbial strains 

 

E. coli D8 (accession number: MF062579) and fungal strains (A. flavus Link ex 
Fries group, A. fumigatus Fresenius, and A. niger van Tiegh) were attained from 

the Microbiology Laboratory, Faculty of Science, Damietta University. Strains 

were conserved at -20°C in a yeast extract peptone glycerol medium (YPG), and 
re-established in potato dextrose agar (PDA, Becton Dickinson, Mexico) plates (48 

to 72 h at 30°C). 

 

Extracellular biosynthesis of rGO/AgNC 

 

E. coli D8 was cultivated aerobically in a nutrient broth medium (Oxoid), for 24 hr 
at 37°C and 150 rpm. The bacterial growth was centrifuged at 5000 rpm for 15 min 

under aseptic conditions to collect culture supernatant and then passed through 

millipore filters. In 100ml of distilled water, 0.3 g of graphene oxide (GO) powder 
(Sigma Aldrich, purity 99.99%) was ultrasonicated for 2 hr. An aqueous solution 

of 1 mM silver nitrate (AgNO3, Panreac Quimica S.L.U, Barcelona, Spain) was 
treated with free cell supernatant and GO colloidal solution (1:1:1 v/v) in a 250ml 

conical flask. AgNO3, GO and nutrient broth mixture (1:1:1 v/v) was prepared and 

utilised as a blank. The flasks were well-shaken and kept in sunlight at room 
temperature. Similarly, the biosynthesis of rGO/AgNC in dark conditions was 

tested and observed via the visible colour alteration of the mixture into brown 

colour. The reaction mixture absorbance of (3 ml aliquots) was examined by an 
Ultraviolet-visible (UV-Vis) spectrophotometer (Beckman DU-40) (Shahverdi et 

al. 2007). 

 

Optimization of the extracellular biosynthesized rGO/AgNC  

 

Different concentrations of AgNO3 solutions (1, 2, 3, 4, 5, and 6 mM) were 
evaluated to select the best concentration for the synthesis of rGO/AgNC at pH 

7±0.2 at room temperature, dark conditions and 150 rpm for 5 days (Mishra et al. 

2014). Different concentrations of bacterial supernatant (1, 10, 20, 30, 40 and, 
50%) were prepared and then added to AgNO3 solutions to enhance the synthesis 

of rGO/AgNC. Different temperatures (20-50°C) and pH values (1-10) were also 
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tested. The biosynthesis of rGO/AgNC was detected in sunlight during various 

time (1-6 min) intervals of incubation (Boopathi et al. 2012). 

 

Description of the biosynthesized rGO/AgNC 

 

The fabrication of rGO/AgNC was monitored by UV-Vis spectroscopy; Beckman 
DU-40. Fourier transform infrared spectroscopy (FT-IR) of rGO/AgNC was 

analysed using FT/IR-4100typeA. The rGO/AgNC X-ray diffraction patterns 

(XRD) were also recorded with an X-ray diffractometer (model LabX XRD-6000, 
Shimadzu, Japan) at 40 kV and 30mA. Transmission electron microscopic (TEM) 

analysis was done according to Wang (2000) using TEM apparatus (200 kV, TEM 
JEOL JEM-2100, Japan). Zeta potential analyser measured size distribution by 

volume, surface charge, and stability of AgNPs and nanocomposite (Ruud et al. 

1976; Hanaor et al. 2012). 
 

Stability of the biosynthesized rGO/AgNC 

 
The stability of rGO/AgNC was tested according to El-Zahed et al. (2021) by 

dissolving rGO/AgNC in different solvents (hexane, toluene, acetone, n-butyl 

alcohol, dimethylformamide (DMF), ethanol, methanol, and water) and detecting 
its Zeta average size (Zavg) and polydispersity index (PDI) by Malvern Zetasizer 

Nano-ZS90, Malvern, UK. 

 
The anti-Aspergillus activity of the biosynthesized rGO/AgNC 

 

The spore suspension of inoculums (0.08 to 1 × 105 CFU/ml) was prepared 
according to the method designated by Espinel-Ingroff et al. (2007). 

 

Agar well diffusion method 

 

The fungicidal action of rGO/AgNC against three Aspergillus strains (A. flavus, A. 

fumigatus, and A. niger) was demonstrated using in vitro agar well diffusion test 
according to the guidelines of the Clinical and Laboratory Standards Institute 

(Clinical and Laboratory Standards, 2006). 100 μl of different concentrations (50, 

100 and 150μg/ml) of GO, rGO/AgNC, AgNO3, and miconazole (Sigma-Aldrich, 
as standard antifungal) were prepared in dimethyl sulfoxide (DMSO) and added 

separately under aseptic conditions into 5mm wells in Sabouraud dextrose agar 

(SDA, Becton Dickinson, Mexico) plates prior to incubation at 30°C for 5 days. 
The inhibition zones were calculated in millimetres (mm). The assays were 

performed three times and the findings were expressed as means. 

 
Radial mycelial growth inhibition 

 

The inhibition of fungal radial growth was investigated according to Quiroga et al. 
(2004). Briefly, a 5 mm disc of 7-days culture was cut and placed upside down in 

the centre of SDA plates amended with 200 µL of the tested antifungal agents 

(150μg/ml); GO, AgNO3, rGO/AgNC, and miconazole. Inoculated SDA plates 
without antifungal agents were used as a control. Three replicates for each 

examined fungus were utilised, and the plates were incubated at 30°C for 7 days. 

The average diameter of the growth was measured in mm and percent inhibition 
rates were calculated through the following formula: 

 

Inhibition rate (%)
R − r

R
 

 
Where, R represents the fungal radial growth on the control, while r represents the 

fungal radial growth on the treated plate. 

 
Ultrastructure study 

 

The exponential‐phase culture of A. niger (as a model for fungi) treated with 
rGO/AgNC (150μg/ml) was taken, prepared, and examined using TEM at 

Mansoura University. 

 
L-lactate dehydrogenase 

 

Total protein content of untreated and rGO/AgNC-treated fungi was estimated by 
the Bradford dye-binding method (Bradford 1976). L-lactate dehydrogenase 

(LDH) activity was measured spectrophotometrically depending on the presence 

of L-lactate and NAD+ reduction. The enzyme (0.1-10 units per millilitre) was 
dissolved just before assay in 0.5 M phosphate buffer, pH 7.0. Use per millilitre of 

reaction mixture: 0.8 ml of 0.5 M phosphate buffer; 0.05 ml of NAD+; 0.1 mL of 

sodium lactate; 5-50 µl of enzyme solution, and water to make the correct final 

volume (3.0 ml). The increase of absorbance at 340 nm was recorded at 25°C, and 

the maximal (initial) rate was used for calculations. One unit of enzyme activity 

reduces NAD+ at the rate of 1 µmole per minute at 25°C. The units of enzyme per 

millilitre of the mixture are calculated from the absorbance change rate (Yoshida 

and Freese, 1975). 

The units of LDH enzymes in the reaction mixture are obtained from the initial rate 
of diminution of absorbance at 340 nm using the following equation: 

 

Units of enzyme (µU/mL) =
O. D 

T
× 

Vt

6.22
× 

1

Vu
×  1000 

 
Where, O.D resemble the optical density at 340 nm, Vt is the total reaction volume, 

T is the time in minutes, 6.22 mM-1cm-1 is the molar extinction coefficient of 

NADH, 1000 is the conversion factor from a unit of the enzyme into µU and Vu is 
the volume of enzyme solution used for the assay. 

Specific activity is expressed as the number of enzyme units per microgram of 

protein. 
 

Statistical analysis 

 
The results were analysed with ANOVA using SPSS software version 18. The 

significant level was set at p<0.05. The experiments were done in triplicate. All 

values were expressed as the mean±standard deviation (SD) (O'connor 2000). 
 

RESULTS 

 

The results showed that E. coli D8 could be used to biosynthesize rGO/AgNC in 

dark conditions within 72 hr. The first indication of the nanocomposite production 

was the colour change into brown. rGO/AgNC showed a peak at 425 nm (Figure 
1). 

 

 
Figure 1 Ultraviolet-visible spectroscopy of GO; (a) and biosynthesized 
rGO/AgNC by E. coli D8; (b). 

 

Optimization of E. coli D8 biosynthesized rGO/AgNC 

 

All UV-Vis spectra of the experimented concentrations of AgNO3 (1-6 mM) 

sustained the nanocomposite production (Figure 2A). Among the concentrations 
tested, 3 mM greatly enhanced the rGO/AgNC biosynthesis. Also, among the 

concentrations of bacterial supernatant tested, 40% (v/v %) appeared to be the best 

for the biosynthesis of rGO/AgNC (Figure 2B), whereas other tested bacterial 
supernatant concentrations did not favour the biosynthesis. Based on colour 

change, pH 4 and 10 resulted in NPs aggregation. On the other hand, colour did 

not change at pH (1-3) and a very small colour change was observed at pH values 
of 4-6. The brown colour development initiated at pH5 and 6 and the intensity of 

the brown colour raised with the rise in pH value (Figure 2C). Amongst various 

levels of temperature, it was found that 30°C was the optimal temperature for 
rGO/AgNC biosynthesis and supernatant below or above this temperature, 

rGO/AgNC production decreased gradually (Figure 2D). The biosynthesis of 

rGO/AgNC at sunlight started in the first minute (Figure 2E). 
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Figure 2 Optimization of rGO/AgNC biosynthesis. (A) Concentrations of AgNO3. (B) Concentrations of bacterial supernatant. (C) pH. (D) Temperature. (E) Time 
exposure to solar irradiation. 

 

Characterization of optimized rGO/AgNC  

 

The optimized biosynthesized rGO/AgNC by E. coli D8 was assessed by UV-Vis 

spectrophotometer, FT-IR and XRD spectra, TEM, Zeta potential analyser and size 
distribution by volume.  The brown colour formed in the optimized medium proved 

the biosynthesis of AgNPs with an adsorption peak of 443 nm.  

The FT-IR spectrum (Figure 3) of GO revealed an adsorption peak at 3436.53 cm−1 
which is assigned to OH stretching. It showed peaks at 1729.83, 1644.02, 1379.82, 

and 1035.59 cm−1, which are attributed to the C = O stretching vibration of COOH 

groups, C=O, C–OH, and C–O vibrations from alkoxy groups, respectively. After 

reduction using E. coli D8 supernatant, the intensity of these peaks was 

considerably reduced, representing that the number of oxygen-containing groups 

of GO decreased dramatically (Zheng et al. 2013). 
Figure 3B displays the XRD patterns of GO and rGO/AgNC in which GO shows 

a notable peak at 11.6° resembling plane GO (002) and interplanar space at 0.79 

Å, refers to its oxidation state (Li and Liu 2010). In rGO/AgNC XRD, the 
disappearance of the peak at 11.6° and the appearance of the broad peak at 

23.9°indicated to the complete reduction of GO to rGO by E. coli D8 supernatant. 

The XRD of rGO/AgNC showed diffraction peaks of AgNPs at 37.8°, 44.5°, 65.4°, 
and 78.15°, resembling the face concentrated cubic (fcc) of AgNPs planes (111), 

(200), (220) and (311), respectively. The strong diffraction peak at 37.8° was 

attributed to crystalline Ag, confirming the fabrication of Ag crystals with high 
purity in rGO/AgNC (Das et al. 2011). 

The size distribution by volume confirmed the good dispersion of these particles 

(Figure 3C) and the Zeta potential of the nanocolloidal solution was +24.1mV 

(Figure 3D). TEM scans revealed AgNPs that were spherical and evenly 

distributed (Figures 3E and F). The average size of the AgNPs was 13.2 nm, with 

a standard variation of 0.25 nm. 
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Figure 3 Characterization of the biosynthesized rGO/AgNC. (A) FT-IR. (B) XRD. (C) The size distribution by volume.  (D) Zeta analysis. (E) and (F) TEM. Bars scale 

= 100 nm (E and F). 

Stability of the biosynthesized rGO/AgNC 

 

The prepared nanocomposite was stable in all solvents for more than 3 h. Table 1 

indicated the good dispersion of rGO/AgNC in polar solvents such as DMF and 
ethanol whereas it was weak in nonpolar solvents. 

 

Table 1 The Zavg and PDI for the rGO/AgNC in different solvents. 

Solvent Zavg (nm) PDI (d.nm) 

Hexane 631 0.544 

Toluene 1157 0.863 

Acetone 1599 0.785 
n-butanol 340 0.487 

DMF 386 0.459 

Ethanol 477 0.756 
Methanol 854 0.812 

Water 301 0.400 

 

The anti-Aspergillus activity of rGO/AgNC 

 

The biosynthesized rGO/AgNC using E. coli D8 showed good antifungal activity 

against all tested Aspergillus strains as shown in Table 2. 
 

 

 

 

 

Table 2 Antifungal activity of rGO/AgNC in comparison with other antifungal 

agents 

Ligands 
Concentration, 

µg/ml 

Inhibition zone (mean±SE, n=3, mm) 

A. flavus 

Link ex 

Fries 

group 

A. 

fumigatus 

Fresenius 

A. niger 

van Tiegh 

GO 

50 -ve -ve -ve 

100 -ve -ve -ve 

150 -ve -ve -ve 

AgNO3 

50 6 ± 0.14 7 ± 0.06 12 ± 0.14 

100 9 ± 0.06 10 ± 0.06 14 ± 0.06 

150 12 ± 0.03 12 ± 0.03 19 ± 0.03 

rGO/AgN

C 

50 13 ± 0.03 12 ± 0.06 15 ± 0.06 

100 15 ± 0.03 14 ± 0.03 18 ± 0.06 

150 19 ± 0.03 18 ± 0.03 23 ± 0.03 

Miconazole 

50 3 ± 0.14 6 ± 0.06 11 ± 0.03 

100 7 ± 0.03 9 ± 0.06 13 ± 0.03 

150 10 ± 0.06 11 ± 0.03 18 ± 0.03 

 
Figure 4 and Figure 5 show the mycelium radial growth and the inhibition of fungal 

growth with and without treatment with tested antifungal agents, respectively. 
rGO/AgNC showed good antifungal action against A. niger (83%) and moderate 

efficacy against A. flavus (68%) and A. fumigatus (63%). 
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Figure 4 Antifungal activity of GO, AgNO3, rGO/AgNC, and miconazole against 

Aspergillus strains at a concentration of 150μg/ml. 

 

 
Figure 5 Inhibitory rate percent of GO, AgNO3, rGO/AgNC, and miconazole 

against Aspergillus strains at a concentration of 150μg/ml. *Indicates significant 

inhibitory rate (p<0.05). 
 

The ultrastructure of rGO/AgNC-treated A. niger 

 
TEM micrographs of treated A. niger cells showed several ultrastructural changes 

in comparison to the untreated ones (Figure 6). Treated A. niger had reduced size, 
lipid globules, and large vacuole with a harsh trickle of cytoplasmic contents. In 

addition, the plasma membrane was separated from the fungal cell. These results 

confirmed the damaging effect of rGO/AgNC on the A. niger cells due to the 
interactions of AgNPs with the cellular component. 

 

 
Figure 6 The antifungal activity of rGO/AgNC on the ultrastructure of A. niger. 

(A) Control without rGO/AgNC treatment. W is the cell wall, PM is the plasma 
membrane, V is the vacuole, and Cy the is compact cytoplasm. (B) Treated sample, 

note the formation of the large vacuole (V), the space formed between the plasma 

membrane and cell wall (white arrows), and lipid droplets (L). 
 

LDH activity test 

 

The effects of rGO/AgNC on LDH activity of A. flavus, A. fumigatus, and A. niger 

are shown in Figure 7 and Table 3. During the assay of LDH activity in the control 

(without rGO/AgNC) and rGO/AgNC-treated fungi, it was found that the 
enzymatic activities and specific activities decreased upon treatment.  

 

 
Figure 7 The enzymatic activities of LDH in untreated and rGO/AgNC-treated 

fungi. *Indicates significant inhibitory rate (p<0.05). 
 

Table 3 Enzymatic activities and specific activities of LDH in untreated and 

rGO/AgNC-treated fungal strains (mean ± SD). 

Fungal strain 

Total protein 

concentration 

(µg/ml) 

Units of the 

enzyme 

(µU/ml) 

Specific 

activity 

(µU/µg) 

Untreated A. niger 2820 ± 0.03 421.2 ± 0.03 0.149 ± 0.03 
Treated A. niger 2764 ± 0.03 71.5 ± 0.03 0.026 ± 0.03 

Untreated A. flavus 2247 ± 0.03 455.44 ± 0.03 0.203 ± 0.03 

Treated A. flavus 2244 ± 0.03 191.02 ± 0.03 0.085 ± 0.03 

Untreated A.  fumigatus 2645 ± 0.03 467.13 ± 0.03 0.177 ± 0.03 

Treated A. fumigatus 2601 ± 0.03 174.18 ± 0.03 0.067 ± 0.03 

 

DISCUSSION 

 

Although the antibacterial actions of rGO and its composites have been commonly 

studied, their antifungal properties are still less reported. Since fungal infection 
critically threatens public health. The current study provides a simple one-step 

method for the fabrication of rGO/AgNC and demonstrates its promising 

antifungal action. This rGO/AgNC was prepared by the bioreduction of GO and 
AgNO3 with cell-free supernatant of E. coli D8 in the presence of sunlight. E. coli 

strains are known for their ability to produce some quinones such as menaquinone, 

demethylmenaquinone and ubiquinone that reduced Ag ions into AgNPs in the 
presence of sunlight (Sharma et al. 2012; Panter et al. 2022). 

Various parameters were optimised to control the shape, size, and stability of 

biosynthesized NPs for effective medical applications, including metal ion 
concentration, cell-free bacterial supernatant concentration, pH, and temperature 

(Sathishkumar et al. 2010; Krishnaraj et al. 2012) and sunlight (Boopathi et 

al. 2012). 
The colour change from colourless to brown is due to the innervation of Ag surface 

plasmon vibrations, which confirm the biosynthesis of rGO/AgNC (Das et al. 

2014; Kalimuthu et al. 2008; Okumura et al. 2016).  

Monodispersed and stable rGO/AgNC were formed at pH 8. These results are 

nearly similar to those obtained from extracellular synthesis by Allophylus cobbe 
(Gurunathan et al. 2014), Alcaligenes faecalis (El-Deeb et al. 2013), and Serratia 

marcescens (Akilandeswari et al. 2014).  Also, temperature affects NPs formation 

and stability (Mishra et al. 2014). In our study, 30ºC was favoured for rGO/AgNC 
biosynthesis, which is similar to that reported for nanoparticles biosynthesis using 

Vitex pedencularis (Adebayo-Tayo and Popoola, 2017). The production of 

rGO/AgNC was achieved within 72 hr. after incubation of 1% (v/v %) of cell-free 
bacterial supernatant with 1 mM of AgNO3 in dark conditions.  This is similar to 

the production rate using Bacillus flexus (Kaur 2018), Bacillus strain CS 11 (Das 

et al. 2014), E. coli (Vandana and Archana 2016), B. cereus, P. aeruginosa, 
Micrococcus luteus, Klebsiella pneumoniae, Proteus mirabilis, and 

Staphylococcus aureus (Baskaran 2013). Sunlight participates in a pointed 

function in the complete reduction of Ag ions at a rapid rate (Nam et al. 2008). 
The biosynthesis in the current study occurred within a minute in the presence of 

solar irradiation. Mokhtari et al. (2009) reported the extracellular biosynthesis of 

AgNPs by K. pneumoniae within a few minutes. In another study, Streptomyces 
aegyptia NEAE 102 was used to biosynthesise AgNPs within one minute (El-

Naggar et al. 2014). The biosynthesized AgNPs had a size range of 9.03-21.55 

nm. Kulkarni et al. (2015) synthesized AgNPs by Deinococcus radiodurans with 
a mean size of 17 nm and AgNPs with a similar size were also produced by B. 

licheniformis NM120-17 (Gomaa 2017). Even inside the aggregates, NPs were 

not in direct contact, indicating that the NPs were stabilised by a capping agent 
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produced directly from bacterial proteins. This stability was tested by assessing the 

zeta potential of the nanocolloidal solution (+24.1mV). This positive zeta potential 

value indicates that the particles could strongly bind the negatively charged 

compounds in the microbial cell wall (Elbeshehy et al. 2015). 

Recently, the antifungal activity of nanomaterials has impressive attention to 

researchers due to the continuous development of microbial resistance (Nguyen et 
al. 2022). This study presents a much more effective and fast-acting fungicide 

against a common fungus, Aspergillus sp. (Abarca et al. 1994). The biofabricated 

rGO/AgNC had a superior effective toxic action against A. niger with an inhibition 
rate of 83%. Hazarika et al. (2016) and Adebayo-Tayo and Popoola (2017) 

demonstrated that A. niger growth was inhibited at a rate of 10% and 10.1%, 
respectively. AgNPs showed anti-Aspergillus activity with a 62-75% fungicidal 

index (Thenmozhi et al. 2013). Against A. niger, an inhibition rate measured was 

15.6% by Vandana and Archana (2016) and 21.6% by Devi and Bhimba (2014). 
Many researchers documented the antimicrobial properties of Ag particles and 

AgNPs (Rathod et al. 2012). When rGO/AgNC and bulk Ag particles were tested 

against A. niger, shown that rGO/AgNC have a stronger antibacterial impact than 
bulk Ag particles. The antifungal activity revealed a dramatic conversion from no 

activity of GO to distinct antifungal growth inhibition of the rGO/AgNC. This 

result was consistent with the previous study that goes is not resistant to fungi (Dai 

et al. 2016). TEM studies confirmed the potent antifungal action of rGO/AgNC 

against A. niger as a fungal model. The untreated hyphal cells of A. niger had a 

healthy cell wall, cell membrane, cytoplasm, and small vacuole. In contrast, several 
alterations were detected after the treatment by rGO/AgNC such as the presence of 

lipid droplets and large vacuoles. Abdel-Hafez et al. (2016) documented the 

accumulation of AgNPs in the cytoplasm, cell nucleus and cytoplasmic membrane 
of AgNPs treated fungi that might be the main factor in the major morphologic 

alterations. Furthermore, the accumulated NPs could interact with DNA and 

damage it (Vahdati and Sadeghi, 2013). Moreover, Radzig et al. (2013) recorded 
the ability of small AgNPs to enter the microbial cell membranes and interact with 

their proteins and enzymes that block, inactivate them and end by the cell death.  

LDH enzyme behaviour was used to study the influence of rGO/AgNC on 
oxidative stress-induced damage in cell respiration. LDH is regarded as a 

trustworthy indication of oxidative stress in cells (Sugimoto et al., 2010). LDH 

uses NAD+ as an electron acceptor to catalyse the reversible oxidation of lactate to 
pyruvate: 

Pyruvate + NADH + H+ ➝ L-lactate + NAD+ 

The LDH activities and specific activities in rGO/AgNC-treated fungi decreased 
after treatment. A. niger was attained to be more susceptible to rGO/AgNC action 

when compared to A. flavus and A. fumigatus. LDH activity was still present after 

the treatment with rGO/AgNC, but it decreased from 455.44, 467.13, and 421.2 to 
191.02, 174.18, and 71.5μmol NADH.min-1 for A. flavus, A. fumigatus and A. 

niger, respectively. According to A. niger, rGO/AgNC strongly inhibited 

dehydrogenase activity which also was reported by Gurunathan et al. (2015). 
Besides, Jaworski et al. (2018) stated a decrease in LDH of S. aureus, E. coli, C. 

albicans, and S. epidermidis membrane integrity after the treatment with 

rGO/AgNC. Eymard-Vernain et al. (2018) recommended the interaction of 
AgNPs with the biomolecule-bearing carboxyl groups of thiol groups that lead to 

the blocking and inactivation of enzymes. In short, rGO/AgNC has an excellent 

antifungal activity with a highly stable structure that could be used in agricultural 
and industrial applications. 

  

CONCLUSIONS 
 

Reduced graphene oxide/silver nanocomposite was biosynthesized using the cell-

free bacterial supernatant of Escherichia coli D8 (AC: MF062579). The optimized 
biosynthesized nanocomposite was highly stable and had higher biocidal activity 

against the pathogenic fungi, A. flavus Link ex Fries group, A. fumigatus Fresenius, 

and A. niger van Tiegh with antifungal index in the range of 83-63%. The 
biosynthesis approach was employed to produce a simple, cost-effective, rapid, 

and eco-friendly nanomaterial with high stability and large quantities. 
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