

THE *IN VITRO* EVALUATION OF *ortho-/meta-/para*-ALKOXYPHENYLCARBAMIC ACID ESTERS BEARING 4-(2-FLUORO-/2-METHYLPHENYL)PIPERAZIN-1-YL MOIETY AGAINST *MYCOBACTERIUM TUBERCULOSIS* H₃₇R_a STRAIN

Ivan Malík*¹, Rodney Govender², Eva Sedlárová¹, Jozef Csöllei^{1,3}, Josef Jampílek³, Aidan Coffey², Jim O'Mahony²

Address(es): Dr. Ivan Malík,

¹Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Odbojárov 10, 832 32 Bratislava, Slovak Republic. Phone number: +421-2-50-117-226.

²Cork Institute of Technology, Department of Biological Sciences, Rossa Avenue, Bishopstown, Cork, Ireland.

³University of Veterinary and Pharmaceutical Sciences, Faculty of Pharmacy, Department of Chemical Drugs, Palackého 1/3, 612 42 Brno, Czech Republic.

*Corresponding author: malikivan001@gmail.com

ARTICLE INFO	ABSTRACT
Received 4. 11. 2013 Revised 19. 11. 2013 Accepted 21. 11. 2013 Published 1. 2. 2014	In a continual research of <i>ortho-/meta-/para</i> -alkoxyphenylcarbamic acid esters as antimycobacterially active compounds, the purpose of current paper was to <i>in vitro</i> screen the potency of the molecules containing incorporated substituted <i>N</i> -phenylpiperazin-1-yl moiety against attenuated <i>M. tuberculosis</i> $H_{37}R_a$ strain which was grown in Middlebrook broth, supplemented with Oleic-Albumin-Dextrose-Catalase supplement and mycobactin J (2 µg/mL) as well. The susceptibility of concerned mycobacterial strain was investigated in a 96-
Regular article	well plate format, the plates were incubated at 37°C for 7 days. According to minimum inhibitory concentrations, as the lowest concentrations which prevented a visual colour change, it was observed that positional <i>ortho-/meta-/para</i> -alkoxy side chain isomerism as well as high lipophilicity did not decisively influenced the effectiveness of inspected compounds. Moreover, qualitatively different
	substitution within basic compartment in terms of electronic properties and possible hydrophobic interactions did not lead to the improvement in the activity.

Keywords: Mycobacterium tuberculosis H37Ra, N-arylpiperazines, alkoxyphenylcarbamates

INTRODUCTION

Tuberculosis (TB), an infectious disease caused by highly virulent bacilli from the Mycobacterium (M.) strain, remains a major global health problem despite the availability of chemotherapy and bacille Calmette-Guérin vaccine. According to the report of World Health Organization (WHO, 2013), such threat causes illhealth among millions of people each year and ranks as the second leading cause of death from an infectious disease worldwide, after the human immunodeficiency virus (HIV). It was reported that there were 8.6 million new TB cases in 2012 and 1.3 million TB deaths (just under 1.0 million among HIVnegative people and 0.3 million HIV-associated TB deaths). Most of these TB cases and deaths occur among men, but the burden of disease among women is also high. In 2012, there were an estimated 2.9 million cases and 410 000 TB deaths among women, as well as an estimated 530 000 cases and 74 000 deaths among children worldwide (WHO, 2013). A very brief insight into the history revealed that the M. tuberculosis strain H₃₇ was originally isolated in 1905 and gained attention for its noted virulence in animal model, a distinctive characteristics used in the classification of "human tuberculosis" in the early 1900s. According to the ability to establish the infection, in 1934, the H₃₇ strain was dissociated into "virulent" (R_v) strain and its "avirulent" counterpart (R_a), as reported in the scientific papers of Steenken et al. (1934, 1946). The distinguishing characteristics of H37Ra and H37Rv are maintained indefinitely on subculture, suggesting that these two strains differed genetically (Gonzalo-Asensio et al., 2008; Zheng et al., 2008). In the last decade, attenuated M. tuberculosis H₃₇R_a successively became one of the most commonly used controls for M. tuberculosis identification and investigation of its virulence and genetic properties (Chen et al., 2006; Soto et al., 2002; Wang et al., 2005; Zheng et al., 2008).

In fact, no new drugs have been developed specifically against mycobacteria since the 1960s. Current drugs have shown a number of toxicity problems, such as marked hepatotoxicity of the first front-line anti-TB drug isoniazid (INH) or pyrazinamide, thus some patients cannot tolerate them (**Primm and Franzblau**, **2007; Saukkonen** *et al.*, **2006; Younossian** *et al.*, **2005**). In addition, some of them (e.g. rifampin) could occasionally cause hepatocellular injury and potentiate hepatotoxicities of other anti-TB medications (**Menzies** *et al.*, **2004**).

Synthesis and physicochemical parameters determination of ortho-/meta-/paraalkoxyphenylcarbamic acid esters has been at the heart of the research at the Department of Pharmaceutical Chemistry of Faculty of Pharmacy in Bratislava. Introduced structures were primarily investigated in terms of their very notable local anaesthetic potency by the research groups of professor Čižmárik (Čižmárik et al., 1976; Čižmárik et al., 1978) who synthesized and studied especially monobasic esters. In addition, besides these compounds, the research team of professor Csöllei was later focused on preparation and analysis of monobasic and dibasic derivatives as well (Csöllei et al., 1988; Csöllei et al., 1993). Concerned molecules consisted of some fundamental parts: lipophilic moiety, polar carbamoyloxy group, (branched) connecting chain and basic fragment. Described model was very similar to the chemical structure of very well-known local anaesthetics, lidocaine (Figure 1), which was discovered from systematic investigations at the Institute of Chemistry at Stockholm University (Erdtman and Löfgren, 1937; Gordh, 1949). As referred research papers concluded, the intensity of local anaesthetic efficiency of the basic esters was strongly dependent on the modification of all their essential compartments.

A few years ago, inspecting *ortho-/meta-/para*-alkoxyphenylcarbamic acid esters as antimycobacterially active agents, it was found out that some of them, which contained *i.a.* substituted *N*-phenylpiperazine fragment, have shown promising activity against *M. tuberculosis* $H_{37}R_v$ (Waisser *et al.*, 2007). It was suggested that the presence of sterically bulky substituent (with electron-withdrawing effect) attached to phenyl ring within their basic compartment might be regarded as favorable in terms of the activity against given virulent strain of mycobacteria (Waisser *et al.*, 2007). However, none of those alkoxyphenylcarbamic acid-based compounds has been *in vitro* screened for its potency against attenuated *M. tuberculosis* $H_{37}R_a$ strain yet. Following mentioned, the objective of current research would be to *in vitro* investigate and to reveal some structural and physicochemical features of the substances 1-8 (Figure 1, Table 1) which might appear to be essential for the potency maintenance (or even enhancement) of concerned compounds and to contribute to knowledge for further complex structure – antimycobacterial activity relationships study as well.

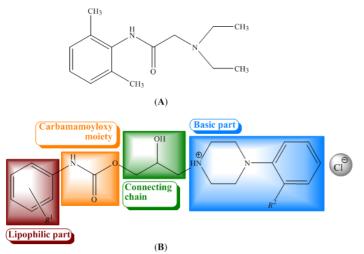


Figure 1 The molecule of lidocaine (A) and general chemical structure of currently antimycobacterially investigated compounds (B)

MATERIAL AND METHODS

The Compounds under the Study

Investigated compounds labelled as 1-8 (Table 1), chemically 1-[3-(2-/3-/4-alkoxyphenylcarbamoyloxy)-2-hydroxypropyl]-4-(2-fluoro-/2-

methylphenyl)piperazinium chlorides (where alkoxy=methoxy or ethoxy), were obtained from the Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava. The molecules 1-8 were prepared and *in vitro* screened as racemates. Their basic physicochemical properties, i.e. solubility profile, acidobasic and lipohydrophilic characteristics as well, were published previously (Malík *et al.*, 2005, 2011).

The In Vitro Antimycobacterial Activity Assay

Mycobacterium tuberculosis $H_{37}R_a$ was grown in Middlebrook broth (MB), supplemented with Oleic-Albumin-Dextrose-Catalase supplement (Becton, Dickinson and Company, Cockeysville, USA) and mycobactin J (2 µg/mL) as well. Identification of this isolate was performed using biochemical and molecular protocols. At log phase growth, culture (10 mL) was centrifuged at 15 000 rpm/20 min using a bench top centrifuge Model CR 4-12 (Jouan Inc., Winchester, USA). Following removal of the supernatant, the pellet was washed in fresh Middlebrook 7H9GC broth and re-suspended in fresh supplemented MB (10 mL). The turbidity was adjusted to match McFarland standard No. 1 (3×10^8 cfu) with MB. A further 1 : 20 dilution of the culture was then performed in MB.

The susceptibility of concerned mycobacterial strain was investigated in a 96-well plate format. In these experiments, sterile deionised water (300 µL) was added to all outer-perimeter wells of the plates to minimize evaporation of the medium in the test wells during incubation. Each evaluated compound (100 µL) was incubated with the mycobacterial strain (100 µL). Dilutions of each derivative were prepared in duplicate. For the tested compounds 1-8, the final concentrations ranged from 1 000 µg/mL to 125 µg/mL. Due to a very limited solubility in distilled water, all substances were firstly dissolved in dimethylsulfoxide and subsequently diluted by supplemented MB. The plates were sealed with parafilm and incubated at 37°C for 7 days. Following incubation, a 10% addition of alamarBlue (AbD Serotec, Kidlington, UK) was mixed into each well and readings at 570 nm and 600 nm were taken, initially for background subtraction and subsequently after 24 h re-incubation. The background subtraction is necessary for strongly coloured compounds, where the colour may interfere with the interpretation of any colour change. For noninterfering compounds, a blue colour in the well was interpreted as an absence of growth and a pink colour was scored as growth. The minimum inhibitory concentrations (MICs) were initially defined as the lowest concentration which prevented a visual colour change from blue to pink.

The *MICs* were defined as the lowest concentration of the compound at which no visible bacterial growth was observed. The *MIC* value is routinely and widely used in bacterial assays and is a standard detection limit according to the guidelines of Clinical and Laboratory Standards Institute (**CLSI**, 2013). Isoniazid (Sigma-Aldrich, Munich, Germany) was used as reference first-line antimycobacterial drug. The results are summarized in μ g/mL and mmol/L units as well.

RESULTS AND DISCUSSION

Following general chemical structure of the compounds under the study 1-8 (Figure 1), their efficiency against *M. tuberculosis* $H_{37}R_a$ could be influenced by:

(i) the position of alkoxy side chain directly attached to lipophilic part (substituent R^1), (ii) the increase in the lipophilicity, i.e. by the elongation of such alkoxy group, (iii) the modification within basic compartment (substituent R^2). Possible impacts of given structural aspects were discussed in next sections of current paper.

As performed in vitro experiments clearly revealed, the position of attached alkoxy group was not found to be essential for the activity of tested compounds 1-8 against concerned attenuated mycobacterial strain. The substances containing 4-(2-fluorophenyl)piperazin-1-yl moiety (labelled as 2-F-PhP for further simplification) as well as 3-alkoxy group (the molecules 3 and 4, respectively) were not more effective than those with attached 2-alkoxy side chain (the compounds 1 and 2, respectively). Similarly, when investigating the derivatives with 4-(2-methylphenyl)piperazin-1-yl fragment (2-CH3-PhP), it was revealed that corresponding positional isomers, with identical number of carbon atoms in alkoxy chain (compound 5 versus 7 and 6 versus 8, respectively), have shown identical values of MIC (Table 1). This finding was considered fist main difference compared to structural requirements which were identified as essential for the activity against the virulent strain H₃₇R_y. Previous research also pointed out that the efficiency of in vitro screened compounds 1-8 against mentioned strain was dependent on the ortho-/meta-/para-alkoxy side chain isomerism within their molecules and decreased in the line as follows: 3-alkoxy (metaposition)=4-alkoxy (para) > 2-alkoxy (ortho) substituted derivatives (Waisser et al., 2007).

Table 1 The *MIC* values of investigated compounds 1-8 against *Mycobacterium tuberculosis* $H_{37}R_a$ obtained from *in vitro* screening

Entry	R^1	R^2	$\log P_{exp}$	MIC	
				µg/mL	mmol/L
1	2-OCH ₃	F	3.41	>500	>1.14
2	$2-OC_2H_5$	F	3.44	>500	>1.10
3	3-OCH ₃	F	3.92	>500	>1.14
4	3-OC ₂ H ₅	F	3.70	>500	>1.10
5	3-OCH ₃	CH ₃	3.44	>1000	>2.29
6	3-OC ₂ H ₅	CH ₃	3.60	>500	>1.11
7	$4-OCH_3$	CH ₃	3.47	>1000	>2.29
8	$4-OC_2H_5$	CH ₃	3.65	>500	>1.11
INH	_	_	-	0.50	3.64×10 ⁻³

Legend: INH – isoniazid, log P_{exp} – logarithm of partition coefficient estimated in octan-1-ol-buffer medium, the values were adopted from research papers of **Malík** *et al.* (2005, 2011)

According to experimentally estimated values of logarithms of the partition coefficients (log Pexps) which were determined previously in octan-1-ol/buffer medium by classical shake-flask method (Malík et al., 2005, 2011) and which ranged in the interval of 3.41-3.92 (Table 1), all the substances in vitro tested were highly lipophilic. The elongation of present alkoxy chain from methoxy to ethoxy, i.e. the lipophilicity enhancement, led to symbolic increase in the potency, even only in the group of the substances containing 2-CH₃-PhP fragment (Table 1). Previous investigations of Waisser el al. (2003a,b, 2007) indicated that the in vitro activity of the compounds containing ethan--1,2diyl/propan-1,3-diyl connecting chain and piperidin-1-yl moiety or 2hydroxypropan-1,3-diyl connecting string and (substituted) N-phenylpiperazin-1yl basic group against *M. tuberculosis* $H_{37}R_v$ became higher with an increase in their hydrophobic properties until a certain level. Supporting given statement, it was clearly documented by the applying linear, parabolic and sigmoidal calculation model as well, that the increase in the activity of basic alkoxyphenylcarbamic acid esters against M. tuberculosis H₃₇R_v, in connection with the lipophilicity enhancement, was limited due to the observation of cut-off effect (Waisser et al., 2009). For the clarification, it was noticed that their efficiency progressively increased with the increase in the number of carbon atoms in their alkoxy moiety up to a critical point beyond which next compound ceased to be active. Balgavý and Devínsky (1996) extensively reviewed several hypotheses of mentioned phenomenon in biological activities as well as experimental evidences which supported them.

As shown in Figure 1, basic fragment of currently in vitro tested molecules 1-8 consisted of variously substituted N-phenylpiperazin-1--yl. The presence of fluorine or methyl group attached to the position 2' of the aromatic part of Nphenylpiperazin-1-yl moiety (R^2) could also influence the electronic properties and possible hydrophobic interactions between such substituted derivatives and effector sites of the mycobacterial cells. In more detail, methyl group bonded at aromatic ring of the molecules 5-8 exerted positive inductive I-effect and released electron density to phenyl ring. Furthermore, the electron density enhancement of the aromate was also achieved by the hyperconjugation, as a stabilizing interaction between a C-H bond (of methyl group) and an adjacent of σ -bond. On the other hand, halogen atom, which contained the compounds 1-4, possessing lone pair of electrons, withdrawed the electrons inductively (negative inductive I-effect) but donated them by mesomeric effect (positive M-effect). More detailed information about these influences could be found in the monography (Hepworth et al., 2002). As can be seen from the estimated MIC readouts (Table 1), considered qualitative change was not reflected in improved efficiency of currently *in vitro* screened compounds against avirulent *M. tuberculosis* $H_{37}R_a$. In contrast, it should be clearly noticed that applied standard INH was the most effective within entire set of tested compounds and it has shown the value of *MIC*=0.50 µg/mL, as listed in Table 1.

CONCLUSION

In conclusion, the results of current research revealed that positional *ortho-/meta-/para*-isomerism of alkoxy group directly attached to lipophilic part within substituted phenylcarbamic acid esters as well as their high lipophilicity were not regarded as essential factors for their potency against avirulent *M. tuberculosis* $H_{37}R_a$. Moreover, assuming the presence of basic, variously substituted *N*-phenylpiperazin-1-yl moiety, electronic effects and possible hydrophobic interactions, which were involved by such qualitatively different substitution, were not reflected in improved activity. For further drug development within considered class of the compounds it could be suggested that the presence of two protonated basic centers instead of protonated (substituted) *N*-phenylpiperazin-1-yl fragment would lead to more promising molecules. In addition, it might be not necessary to take into account the integration of aromatic system within their basic part.

Acknowledgments: The authors are very grateful to Slovak Grant Agency for Science for supporting by the VEGA Grant Projects No. 1/0039/12 and No. 1/0055/11 as well as by the grant project of the Irish Department of Agriculture Fisheries and Food (FIRM): Refs 08RDCIT601 and 08RDCIT617. The authors thank the anonymous reviewers for their valuable comments and helpful revision suggestions.

REFERENCES

BALGAVÝ, P., DEVÍNSKY, F. 1996. Cut-off effects in biological activities of surfactants. *Advances in Colloid and Interface Science*, 66, 23-63.

CHEN, M., GAN, H., REMOLD, H.G. 2006. A mechanism of virulence: virulent *Mycobacterium tuberculosis* strain $H_{37}R_{\nu}$, but not attenuated $H_{37}R_{a}$, causes significant mitochondrial inner membrane disruption in macrophages leading to necrosis. *Journal of Immunology*, 176(6), 3707-3716.

CLSI. 2013. Clinical and Laboratory Standards Institute. Standards and guidelines regarding clinical and laboratory testing for use within the healthcare and medical testing communities.

CSÖLLEI, J., BOROVANSKÝ, A., ČIŽMÁRIK, J., ŠVEC, P., RAČANSKÁ, E., TUMOVÁ, I. 1988. Local anesthetics. 90. Asymmetric dibasic alkyl esters of alkoxyphenylcarbamic acids. *Pharmazie*, 43(9), 609-610.

CSÖLLEI, J., BÚČIOVÁ, L., ČIŽMÁRIK, J., KOPÁČOVÁ, L. 1993. Local anesthetics. VXII. Preparation and effectiveness of dibasic alkylesters of 2-, and 3-alkoxy-substituted phenylcarbamic acids. *Československá Farmacie*, 42(3),127-129.

ČIŽMÁRIK, J., BOROVANSKÝ, A., ŠVEC, P. 1976. Study of local anesthetics. LII. Piperidinoethyl esters of alkoxyphenylcarbamic acids. *Acta Facultatis Pharmaceuticae Universitatis Comenianae*, 29(1), 53-80.

ČIŽMÁRIK, J., MITOŠINKOVÁ, M., BOROVANSKÝ, A., ŠVEC, P. 1978. Lokalanästhetica. 66. Mitteilung: Dimethylaminoäthylester der Alkoxyphenylcarbamidsäuren. *Pharmazie*, 33(8), 509-512.

ERDTMAN, H., LÖFGREN, N. 1937. Über eine neue Gruppe von lokalanästhetisch wirksamen Verbindungen. *SvKT*, 49, 163-166.

GONZALO-ASENSIO, J., SOTO, C.Y., ARBUÉS, A., SANCHO, J., MENÉNDEZ, M.C., GARCÍA, M.J., GIRCQUEL, B., MARTÍN, C. 2008. The *Mycobacterium tuberculosis phoPR* operon is positively autoregulated in the virulent strain H₃₇R_v. *Journal of Bacteriology*, 190(21), 7068-7078.

GORDH, T. 1949. Xylocain, a new local analgesic. Anaesthesia, 4(1), 4-9.

HEPWORTH, J.D., WARING, D.R., WARING, M.J. 2002. Aromatic chemistry. Cambridge: The Royal Society of Chemistry, 178 p. ISBN-10: 0854046623. ISBN-13: 978-0854046621.

MALÍK, I., SEDLÁROVÁ, E., ANDRIAMAINTY, F., GALIŠINOVÁ, J., CSÖLLEI, J., VANČO, J. 2011. Synthesis and basic physicochemical properties of 1-[3-(Y-alkoxyphenylcarbamoyloxy)-2-hydroxypropyl]-4-(2-methylphenyl) piperazinium chlorides. *Česká a Slovenská Farmacie*, 60(3), 137-143.

MALÍK, I., SEDLÁROVÁ, E., ČIŽMÁRIK, J., ANDRIAMAINTY, F., CSÖLLEI, J. 2005. A study of physicochemical properties of 2-, 3-, 4alkoxyphenylcarbamic acid derivatives with a substituted *N*-phenylpiperazine moiety in the basic part. *Česká a Slovenská Farmacie*, 54(5), 235-239.

MENZIES, D., DION, M.J., RABINOVITCH, B., MANNIX, S., BRASSARD, P., SCHWARTZMAN, K. 2004. Treatment completion and costs of a randomized trial of rifampin for 4 months *versus* isoniazid for 9 months. *American Journal of Respiratory and Critical Care Medicine*, 170(4), 445-449.

SOTO, C.Y., ANDREU, N., GIBERT, I., LUQUIN, M. 2002. Simple and rapid differentiation of *Mycobacterium tuberculosis* $H_{37}R_a$ from *M. tuberculosis* clinical isolates through two cytochemical tests using neutral red and nile blue stains. *Journal of Clinical Microbiology*, 40(8), 3021-3024.

PRIMM, T.P., FRANZBLAU, S.G. 2007. Recent advances in methodologies for the discovery of antimycobacterial drugs. *Current Bioactive Compounds*, 3(3), 201-208.

SAUKKONEN, J.J., COHN, D.L., JASMER, R.M., SCHENKER, S., JEREB, J.A., NOLAN, CH.M., PELOQUIN, CH.A., GORDIN, F.M., NUNES, D., STRADER, D.B., BERNARDO, J., VENKATARAMANAN, R., STERLING, T.R. 2006. An official ATS statement: Hepatotoxicity of antituberculosis therapy. *American Journal of Respiratory and Critical Care Medicine*, 174(8), 935-952.

STEENKEN, W., GARDNER, L.U. 1946. History of H₃₇ strain of tubercle bacillus. *American Review of Tuberculosis*, 54, 62-66.

STEENKEN, W., OATWAY, W.H., PETROFF, S.A. 1934. Biological studies of the tubercle bacillus. III. Dissociation and pathogenicity of the R and S variants of the human tubercle bacillus (H₃₇). *The Journal of Experimental Medicine*, 60(4), 515-543.

WAISSER, K., DRAŽKOVÁ, K., ČIŽMÁRIK, J., KAUSTOVÁ, J. 2003a. Antimycobacterial activity of basic ethylesters of alkoxy-substituted phenylcarbamic acids. *Folia Microbiologica*, 48(1), 45-50.

WAISSER, K., DRAŽKOVÁ, K., ČIŽMÁRIK, J., KAUSTOVÁ, J. 2003b. Antimycobacterial activity of piperidinylpropyl esters of alkoxy-substituted phenylcarbamic acids. *Folia Microbiologica*, 48(5), 585-587.

WAISSER, K., DOLEŽAL, R., ČIŽMÁRIK, J. 2009. Graphic demonstration of the structure – antimycobacterial activity relationships in the series of ester phenylcarbamid acids with piperidine or pyrrolidine moiety. *Folia Pharmaceutica Universitatis Carolinae* 37(1), 65-76.

WAISSER, K., DOLEŽAL, R., ČIŽMÁRIK, J., MALÍK, I., KAUSTOVÁ, J. 2007. The potential antituberculotics of the series of 2-hydroxy-3-(4phenylpiperazin-1-yl)-propylphenylcarbamates. *Folia Pharmaceutica Universitatis Carolinae*, 35-36(1), 45-48.

WHO. 2013. Global Tuberculosis Report 2013. Geneva: WHO Press, 306 p. ISBN: 978 92 4 156465 6.

WANG, G.-Q., ZHANG, CH.-W., LIU, H.-CH., CHEN, Z.-B. 2005. Comparison of susceptibilities of *M. tuberculosis* H₃₇R_a and *M. chelonei* subsp. *abscessus* to disinfectants. *Biomedical and Environmental Sciences*, 18(2), 124-127.

YOUNOSSIAN, A.B., ROCHAT, T., KETTERER, J.P., WACKER, J., JANSSENS, J.P. 2005. High hepatotoxicity of pyrazinamide and ethambutol for treatment of latent tuberculosis. *The European Respiratory Journal*, 26(3), 462-464.

ZHENG, H., LU, L., WANG, B., PU, S., ZHANG, X., ZHU, G., SHI, W., ZHANG, L., WANG, H., WANG, S., ZHAO, G., ZHANG, Y. 2008. Genetic basis of virulence attenuation revealed by comparative genomic analysis of *Mycobacterium tuberculosis* strain $H_{37}R_a$ versus $H_{37}R_v$. PLoS One, 3(6), e2375, 1-12.