
 

 
 

 

  

 
 
 

 
 

 

 

 

 

 

 

 

 
 

Tvrdá et al. 2013 : 3 (1) 1-14 
 

                                                    

  
1 

 

  

Journal of Microbiology, Biotechnology and Food Sciences 
 

...International peer-reviewed scientific online journal... 

MINERAL NUTRIENTS AND MALE FERTILITY 
 

Eva Tvrdá*, Peter Sikeli, Jana Lukáčová, Peter Massányi, Norbert Lukáč 
 

Address(es): MSc. Eva Tvrdá,  

Slovak University of Agriculture, Faculty of Biotechnology and Food Sciences, Department of Animal Physiology, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic, 
phone number: +421 37 641 4288. 

 

*Corresponding author: evina.tvrda@gmail.com 

 
ABSTRACT 

 
Keywords: Minerals, semen, spermatozoa, fertility, macronutrients, micronutrients 

 
 

 

INTRODUCTION 

 

Male fertility is a complex feature composed of various physiological processes 

including growth and development of the reproductive system from birth to 

adolescence, spermatogenesis, ejaculation and mating behavior (including libido 
and coitus). Optimal semen quality requires all these physiological processes to 

be coordinated and ideally interconnected (Cupps, 1991). 

Semen quality varies qualitatively and quantitatively with age, illness, sexual 
activity, and diet of the organism, with many studies being focused on the 

biochemistry of semen. Biochemical contributions to male fertility also include 

natural environmental factors, different anthropogenic activities as well as other 
sources. Minerals represent an extensive group of ecophysiological importance 

among these sources (Marzec-Wróblewska et al., 2012). 

In  relation to their role in male reproduction, chemical elements may be 

essentially divided in the following three groups: 

1. Essential minerals, with high concentrations and crucial functions 

present in semen: Na, K, Cl, Ca, Mg, P, S (Marzec-Wróblewska 

et al., 2012). 

2. Trace elements, which are critical to maintain proper functions of 

biomolecules, but are required in relatively low amounts, as their 
elevated concentrations may have a toxic impact on the sperm 

development, structure or function: Fe, Cu, Mn, Se, Zn, Co, I, Mo 

(Massányi et al., 2004; 2005). 
3. Heavy metals, which do not have any detectable biological roles in 

ejaculates. On the contrary, many authors have reported heavy 

metal-associated detrimental effects on semen quality and fertility 
rates either by a direct impact on the testicular function (Lukac et 

al., 2007) or mediated via hormonal imbalances (Kňažická et al., 

2013) or toxicant-induced oxidative stress (Tvrdá et al., 2013). 
Male fertility-associated toxicity has been observed especially in 

the case of Pb, Hg, Cd, As and Al. 

Chemical nutrients are shown to have an indirect but crucial effect on male 
reproduction, as an unbalance in their amounts may lead to a defective 

spermatogenesis, structural or functional sperm abnormalities, reduced libido, 

and consequently, impairment of male fertility. Dietary and feeding 
supplementation, as well as environmental characteristics have the ability to 

modulate male reproductive performance, which is why the presence of chemical 

elements in the male reproductive system and ejaculate cannot be ignored. This 
review will provide complex information to understand the participation of 

important dietary and environmental chemical elements on male reproductive 

features, processes and functions. 

 

SODIUM (Na) AND POTASSIUM (K) 

 
Both cations are considered to be two essential macronutrients found in lagre 

amount in animal cells.  

Na is defined as an extracellular element while K is intracellular in nature, and it 
has been suggested that seminal ionic equilibrium and osmotic pressure are 

primarily maintained by these two ions (Hawk et al., 1964). Their presence in 

semen is reported to be responsible for the maintenance of osmolarity and 
activity of spermatozoa (Ahmad and Chaudhry, 1980). 

According to Cragle et al. (1958), K is highly concentrated within spermatozoa 

when compared to the seminal plasma, while Na is found excluded from the cells 
to some extent. At the same time, the significance of K  within the sperm cells, as 

well as the exclusion of Na from spermatozoa in relation to storage quality and 

fertilizing capacity, is not fully understood yet. However, it is generally believed 

that both the presence of K as well as Na exclusion may be the result of 

metabolic activity and substrate utilization by the sperm cell (Sorensen and 

Anderson, 1956). 
While the K concentration within spermatozoa fluctuates much less than the 

plasma K, Na amounts within spermatozoa vary as directly and greatly as the 

corresponding plasma Na. The accessory sexual glands of certain farm animals 
accumulate K to a level much higher than that found in the blood plasma. On the 

other hand, the increase in K is matched by a decrease in Na to a lower level 

when compared to the blood plasma. It is suggested that energy is expended by 
the accessory glands to accumulate K and Ca in the seminal fluid, and that Na is 

displaced by these two minerals, maintaining a constant osmotic pressure 

(Cragle et al., 1958).  
At the same time, K  has been defined as important in volume regulation 

processes vital for spermatozoa, which are based on spermatozoa achieving 

a stable volume crucial for their surveillance in the male and female genital tract. 
K  ion channels have additional important functions in the sperm physiology, 

serving as means of communication between the spermatozoon and its 

environment. Additionally, they play vital roles in the regulation of sperm 
motility, chemotaxis and the acrosome reaction (Darszon et al., 1999; Barfield 

et al., 2005), and in situations when spermatozoa encounter a hypo-osmotic 

challenge upon ejaculation into the female tract (Yeung and Cooper, 2008). 
Furthermore, K ions may be an indication of sperm plasma membrane integrity 

(Asadpour; 2012).  

Low Na levels have been linked to general infertility and embryonic mortality in 
several farm animals (Dittman, 2008). On the other hand, high levels of Na and 

K ions were associated with low percentages of motile sperm, and such semen 

was considered to be of lower quality in the study by Asadpour (2012), also 
suggesting that Na and K generally establish the osmotic balance, and seminal 
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plasma osmolarity ultimately plays an important role in the activation of the 
sperm cell. Inversely, Zamiri and Khodaei (2005) showed that low levels of Na 

and K were associated with high percentage of motile sperm. Furthermore, 

Cragle et al. (1958)  as well as Sheth and Rao (1962) found that oxygen uptake, 
glycolysis and fructolysis could be inhibited by K, indicating that this element 

may adversely affect spermatozoa motility, which was additionally confirmed by 

Cevik et al. (2007). Moreover, Ford (2001) and Griveau et al. (1994) concluded 
that at low pH the K ion pairs with the superoxide causing a significant increase 

in lipid peroxidation (LPO) and free radical formation, both of which are 

inversely correlated with sperm motility and seminal antioxidant status. 
 

CALCIUM (Ca) 

 

Calcium is required in many physiological processes as a regulator in all living 

cells, including spermatozoa. Most of the intracellular Ca is found bound to 
proteins in the cell membrane, mitochondria and nucleus, which is why the 

concentration of Ca in the  intracellular fluid is considerably reduced (Kaplan et 

al., 2002; Eghbali et al., 2010a). 
Spermatozoa are highly differentiated cells with the plasma membrane being the 

major cellular component, involved in diverse and complex functioning of the 

sperm cell to achieve fertilization. Many of these functional processes are made 
effective by the transport of ions across the plasma membrane through ion 

channels, with various types of Ca channels being the most studied in the sperm 

behavior (Publicover et al., 2007; Yeung and Cooper, 2008).  
Ca is a part of the second messenger system involved in many cell functions.  It 

is needed for the disruption of the mitochondria membrane by allowing protein 

kinases to stimulate the side-chain cleavage of cholesterol, which is the first step 
in steroidogenesis located in the Leydig cells (Cupps, 1991; Eghbali et al., 

2010a). 

According to Semczuk and Kurpisz (2006), Ca helps to maintain the osmolar 
balance and takes part in nutrient transfer. It is necessary for the last stage of 

capacitation, and the following acrosome reaction, as well as a hyperactive 

motility of spermatozoa. Experiments have shown that addition of ionophore 
A23187, which actively transports the Ca ions from the extracellular to the 

intracellular space, induces the acrosome reaction (Aitken et al., 1993a). 

However, it was proved that the initiation of acrosome reaction with the 

ionophore is possible with the presence of Ca ions in the extracellular space only 

(De Jonge, 1994). At the same time, exposure of capacitated spermatozoa to 

periovulation follicular fluid or progesterone caused a Ca  influx from the 
extracellular space with a subsequent initiation of the acrosome reaction (De 

Jonge, 1999).  

Furthermore Alvarez et al. (2012) showed that once witihin the female 
reproductive tract, and as a consequence of attractants released by the oocyte, Ca 

concentration rises changing  the flagellum’s beating pattern, spurring the sperm 

to turn. Additionally, the rate of the Ca increase dictates how sharply the sperm 
turns, whereas the path of the subsequent run depends on the steepness of the Ca 

decline (Alvarez et al., 2012). Also, as recorded by Swann (1990), at 

fertilization, spermatozoa activate eggs by causing transient increases in the 
intracellular free Ca concentration.  

The exact impact of Ca on the sperm cell motility has not been completely 

elucidated, however significant and positive correlation between Ca and sperm 
motility was observed in the study of Eghbali et al., (2010a), explained by a 

direct involvement of Ca in the regulation of cellular energy production and 

nutrient transport, essential for spermatozoa when reaching the locus of 
fertilization. Moreover it was noticed that the addition of Ca with calsemin to 

isolated ram caudal spermatozoa caused a stimulation of flagellar beat activity 

(Bradley and Forrester, 1982). Prien et al. (1990) compared sperm motility, 
velocity, and progressive movement with total and ionized Ca  in patients with 

normal and decreased sperm motility. No difference in total Ca was found, but 

a statistically significant decrease in seminal ionized Ca was found in men with a 
decreased motility. Kaya et al. (2002) concluded that increasing ejaculation 

frequency may decrease the sperm motility due to a reduction of  Ca in the 

seminal plasma. 
Moreover as shown by Eghbali et al., (2010a), Ca present in the seminal plasma 

of buffalo bulls plays an important role in preserving spermatozoa motility and 
viability, as well as antioxidant status by protecting the sperm cells from 

oxidative damage.  

On the other hand, negative correlation between the Ca content in the seminal 
plasma and spermatozoa motility was found in bovine semen (Machal et al., 

2002). Magnus et al. (1990a) found no association between ionized Ca 

concentrations and the proportion of spermatozoa displaying progressive 
movement. Arver and Sjoberg (1982) reported low ionized Ca to be associated 

with more and better progressive motile spermatozoa. Results of  Asadpour 

(2012) showed that high levels of Ca were associated with lower percentage of 
motile sperm in rams. Garcia and Graham (1989) showed that a reverse 

proportional correlation existed between the Ca content and the motility of 

seminal cells.  
 

 

 
 

MAGNESIUM (Mg) 

 

Mg is the second most prevalent intracellular cation, which is essentially 

involved in the metabolic activity of the cell. Most of the element is bound to 
proteins and negatively charged molecules, 80% of the cytosolic Mg may be 

found within ATP. The nucleus, mitochondria and endoplasmic reticulum contain 

significant amounts of Mg. Transport of Mg across the cell membrane is 
regulated by a specific transport system (Eghbali et al., 2010a; Burtis et al., 

2013). 

Intracellular Mg is involved in the activity of different hormone receptor 
complexes located in the cell membrane (Cupps, 1991) and is an important  

cofactor of more than 300 enzymes active in various catalytic reactions. 
Furthermore, Mg plays a significant role in the energy metabolism and nucleic 

acid synthesis.  

Wang et al. (2005) suggest that Mg located in the seminal plasma is related to 
prostatic secretions. This statement is supported by Stegmayr et al. (1982) 

reporting that the human seminal plasma contains secretory granules and vesicles 

of prostatic origin, which might have a regulatory effect on the sperm motility by 
modulating the concentration of essential cations in their environment. 

Membranes of these organelles contain Mg and Ca-dependent ATPase 

competitively inhibited by Zn (Ronquist et al., 1987a;b), which explains 
positive associations between Zn and Mg detected by Umeyama et al. (1986) 

and Sorensen et al. (1999). 

Additionally, Mg was proved to be involved in the osmolar balance and nutrient 
transfer. The presence of Mg is necessary for capacitation, hyperactivation  and 

acrosome reaction of spermatozoa (Semczuk and Kurpisz, 2006).  

However, the relationship between Mg and sperm quality is still unclear. Some 
experimental data show that the Mg amount in the seminal plasma increases with 

sperm concentration but has no significant relationship with sperm motility 

(Wong et al., 2001). On the other hand, positive effects of Mg on the motility, 
morphology and concentration of spermatozoa were reported by Marzec-

Wróblewska et al. (2012). Similar results were obtained by Abdul-Rasheed 

(2010) and Eghbali et al. (2010a) showing a significant decrease in the infertile 
seminal plasma Mg levels and indicating that magnesium may be a good criterion 

for prostate function and sperm quality. Also, seminal plasma Mg correlated 

significantly and positively with sperm motility and morphology. Kaludin and 

Dimitrova (1986) found a direct proportional correlation between Mg content 

and ram spermatozoa motility. Meanwhile, Kaya et al. (2002) by increasing 

ejaculation frequency observed a reduction in Mg content of seminal plasma in 
parallel with a decrease in sperm motility and concentration, as well as seminal 

volume. 

On the contrary, according to Wang et al. (2005), the Mg concentration in the 
seminal plasma of a poor spermatic quality group was quite close to that of a 

normal group. Garcia and Graham (1989) observed that solutions containing 

Mg provided significantly less protection to bovine sperm cells during freezing 
and thawing.  

Nonetheless, Mg has been proved to be beneficial for the antioxidant capacity of 

semen. Eghbali et al. (2010a) showed that the Mg content in the seminal plasma 
was highly positively associated with the total antioxidant status of semen. As 

shown by Chandra et al. (2013), Mg intake decreased LPO and increased the 

activity superoxide dismutase (SOD) as well as catalase (CAT) in rat testicular 
tissue. Furthermore, strong and significant associations between Mg and 

glutathione (GSH) were found in the study by Townsend et al. (2003) proving 

that GSH is Mg dependent, as the glutathione synthetase requires Mg cations for 
activation. 

 

CHLORINE (Cl) 

 

Chlorine is the dominant antion present in the body and serves as an integral low 

molecular weight intracellular osmolyte related to the osmolarity of extracellular 
fluids and determination of  cell volume. The cellular volume essentially serves 

to re-establish the osmolyte equilibrium across the cell membrane, as water loss 

accompanies the loss of osmolytes, hence hypotonic swelling is halted and 
reversed (Al-Habori, 1994; O’Neill, 1999). The net efflux of the osmolytes 

including Cl derives from a swelling-induced activation of specific transport 
pathways. In the case of most animal cell types, including spermatozoa, K and Cl 

leave the cell by a parallel activation of several volume-sensitive K and anion 

channels, however organic osmolyte efflux can also take place through a volume-
sensitive anion channel, commonly known as chloride channel. Several types of 

Cl channels may be detected in a sperm cell, performing various functions and 

being activated by different mechanisms, e.g. by intracellular Ca, cyclic AMP, 
transmembrane voltage, or cell swelling (Al-Habori, 1994).  

With respect to spermatozoa, Cl channels have been detected in mouse (Espinosa 

et al., 1998) and boar semen (Melendrez and Meizel, 1996); there is further 
evidence that similar channels participate in the mouse, boar and human 

acrosome reaction (Petrunkina et al., 2004). 

On the other hand, Cl present in culture media for spermatozoa or seminal plasma 
at the time of ejaculation may have a controversial impact on spermatozoa 

viability, as shown by Sharma and Ludwick (1976). While low elevations of Cl 

concentration had a positive effect on the bovine spermatozoa motility 
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parameters during a prolonged time, high concentrations had an instant negative 
effect on the sperm survival rate. 

 

IODINE (I) 

 

Iodine is referred to as a trace mineral, since the amount necessary to maintain 

normal body conditions is very small. Most of I is concentrated in the thyroid 
gland (Barakat, 2004). It is an essential element that is necessary for normal 

thyroid function, as I from dietary sources is used in the synthesis of thyroxin 

(T4) and triiodothyroxine (T3) (Sanchez, 1995). The presence of a functioning 
thyroid is a crucial prerequisite for a normal growth and maturation. The 

mechanisms by which the thyroid hormones regulate metamorphic changes are 
not completely understood. Presumably, the hormones may act as a trigger for 

genetically determined sequence of changes in various cells. Within these 

changes it appears that T4 and T3 act precisely and locally on the cells whose 
development is being directed (Kaltenback, 1966).  

The results by Crissman et al. (2000) indicate that neonatal I deficiency may 

significantly increase the spermatogenic function, including testes weights, 
Sertolli cells and round spermatidis, but without any significant impact on the 

sperm motility, morphology or testicular histopathology. 

 It appears that the basic thyroid hormone-mediated control of the testicular 
development is applicable to humans as well as other animal species. In humans, 

macroorchidism and very high sperm counts were associated with congenital 

hypothyroidism (Bruder et al., 1995; Castro- Magana et al., 1988). 
Furthermore, neonatal hyperthyroidism in rats, caused by daily injections of T3 

resulted in smaller testes and prematurely truncating Sertoli cell proliferation 

(Van Haaster et al., 1993), suggesting that the controlling effect of the thyroid 
hormones on the testis development may be continuous through the subnormal, 

normal, and supernormal range of hormone levels. Therefore, a measurable 

decline in the spermatogenic capacity of human populations caused by juvenile I 
status appears to be quite plausible (Crissman et al.; 2000).  

On the other hand, administration of potassium iodine to bulls improved the 

ejaculate volume (Simirnov, 1972). Darwish et al. (1974) cited that feeding I 
during the summer period increased the ejaculate volume of Friesian bulls. 

Likewise, Simirnov (1972) and Sanchez  (1995) noticed that in regions where I 

deficiency occurs, bull fertility may be affected due to a decreased libido, 

ejaculate volume, sperm motility and sperm cell concentration. Moreover, Reddi 

and Raj (1986) recorded that in experimental conditions of hypothyroidism, 

male goats exhibited a dramatic loss of libido, low sperm viability and increased 
morphologically abnormal spermatozoa. After the end of the treatment the male 

sexual behavior as well as the values for semen characters returned to normal. 

Groppel et al. (1983) concluded that the impact of I supplementation on the 
testicular growth was only detected in very young animals. 

On the other hand,  Barakat (2004) recorded a significant increase in the 

individual motility of bulls supplemented with I. At the same time, I 
supplementation had no effect on the sperm viability or abnormalities, being in 

accordance with El-Wishy et al. (1967). Also, it was concluded that KI 

supplementation to bulls had a beneficial effect on the semen quality and 
quantity, initial fructose concentration, as well as the endocrinological output of 

male hormones together with a positive relationship on the growth and 

maturation (Barakat, 2004). 
 

PHOSPHORUS (P) 

 
Phosphorus is one of the most important minerals in animal nutrition, with 80% 

of the element found in the bones and teeth and the remainder located  in body 

fluids and soft tissue. P plays a key metabolic role and has more physiological 
functions than any other mineral (Marzec-Wróblewska et al., 2012).  

The chemical nature of P compounds in mammalian semen, and their distribution 

between spermatozoa and seminal plasma, has been the subject of relatively few 
studies in the past. Generally, P plays a major role in the maintenance of osmotic 

pressure, buffer capacity and acid-base balance. Phosphorylation is responsible 

for glycolysis and direct oxidation of carbohydrates, excretion, transport of lipids, 
exchange of amino acids, etc. P is also a component of a large number of co-

enzymes. The element forms part of the structure of  nucleic acids, which are 
carriers of genetic information, regulate protein biosynthesis and imunity 

(Marzec-Wróblewska et al., 2012). 

A well-established P biomolecule is ATP, which was first isolated from ram 
sperm by Mann (1945a). Other nucleotides that have been reported to occur in 

sperm are ADP and AMP, which, together with ATP are defined as universal 

accumulators and donors of energy (Newton and Rothschild, 1961). The 
occurrence of guanine and cytosine nucleotides has been inferred from their 

presence in acid hydrolysates from bovine and buffalo sperm (Abraham and  

Bhargava, 1962). Furthermore, nicotinamide coenzymes extracted from bull and 
rabbit sperm have been noted by Bistocchi et al. (1968). 

Nevertheless, according to Brooks (1970) it is difficult to detect the exact 

amount of P and P-derived molecules due to the presence of powerful 
phosphatases and nucleotidases in the seminal plasma, capable of rapidly 

metabolizing organic phosphorus compounds. Not only do phosphatases occur 

within the sperm, but large quantities of these enzymes have been detected  in the 
seminal plasma too (Brooks, 1970).  

The presence of glycerylphosphorylcholine in mammalian semen was 
demonstrated by Dawson et al. (1957), who found that this molecule was derived 

from the epididymal secretion of bulls and boars. Further evidence that this 

compound is not of spermatozoal origin was indicated by its absence in washed 
ram sperm preparations and their inability to liberate this compound during 

incubation. Glycerylphosphorylinositol has been reported to occur in bull and 

ram semen by Seamark et al. (1968) and, like glycerylphosphorylcholine, it 
appears to be originated in the accessory sex organs as demonstrated in the rat 

and stallion. According to Brooks (1970), the absence of UDP-glucose and 

glucose 1-phosphate is not surprising, since manmnalian spermatozoa are known 
to have only a negligible content of glycogen (Mann and Rottenberg, 1966).  

Yanagisawa et al. (1968) found the guanine nucleotides bound to tubulin, a 
protein constituting the microtubules of the sperm flagellum. Their data served as 

evidence for the presence of a nucleoside diphosphokinase that catalyses the 

transfer of the terminal phosphate 
from ATP to GDP, postulating that GTP serves to contract the tubulin molecules.  

Several studies (Mann, 1945b; Lundquist, 1949) on semen metabolism have 

indicated the important role of P-containing enzymes in sperm glycolysis. 
Furthermore, glycolysis is an important source of sperm energy and appears to be 

the preferential source when a broad spectrum of suitable substrates is available 

(Lundquist, 1949; Flerchinger and Erb, 1955). 
Moreover, many enzymes have been identified in the semen of several species 

with indication of considerable interspecies variation (Mann, 1974). MacLeod 

(1939) and Lundquist (1949) observed seminal enzymes capable of 
dephosphorylating phosphate esters. 

Although semen of the bull is not particularly high in alkaline phosphatase and 

even lower in acid phosphatase (Flerchinger and Erb, 1955) as compared with 
the other species, it is a particularly rich source of 5-nucleotidase (Mann, 1974). 

Washed sperm suspensions utilize glycolyzable sugars in preference to 

phospholipids (Lardy and Phillips, 1941). At the same time, phospholipids 
provide a source of energy in sugar-free suspensions under aerobic conditions 

(Lardy and Phillips, 1941).  

P is required for the maintenance of glycolysis and motility (Flerchinger and 

Erb, 1955), though it was suggested that P-containing diluents are associated 

with motility inhibition even when the peroxide accumulation is prevented with 

catalase (Bishop and Salisbury, 1965). Inversely, the P concentration detected in 

the seminal plasma of active bulls by Machal et al. (2002) was positively 

correlated with all quality as well as quantity characteristics of bovine semen. 

According to Arrata et al. (1978), there was a significant correlation between 
motility, progression, and the glycerylphosphorylcholine (GPC) ratio. Poor 

motility and progression in the specimens were accompanied by low GPC ratios 

regardless of the sperm counts. Furthermore, Hula et al. (1993) performed a 
phospholipid analysis of whole ejaculates from 12 healthy and 35 infertile 

subjects. It was shown that inorganic phosphorus of total phospholipids 

decreased in ejaculates of men with secretory infertility. Lyso-phosphatidyl 
choline (LPC) was not detected in ejaculates of men with relative infertility. 

Additionally, the amount of lyso-phosphatidyl ethanolamine (lyso-PE) and 

sphingomyelin decreased in ejaculates of persons associated with infertility.  
 

SULFUR (S) 

 
Sulfur is a naturally occurring mineral that is a key constituent of several 

nutrients considered essential to human and animal health. S-dependent nutrients 

include the amino acids methionine, cysteine and taurine, as well as the vitamins 
biotin and thiamin. Because a wide array of foods, particularly high-protein foods 

contain S, deficiencies of the mineral are generally rare (Marzec-Wróblewska et 

al., 2012). 
Studies by Lehninger (1966) and Tumenbaevish et al. (2012) have shown that 

some thiol compounds have a positive effect on the viability of semen. It is also 

established that the sulphydryl (SH-) groups are involved in conjugation reactions 
of oxidative phosphorylation (Prokoptsov et al., 1974) and play a role in 

mitochondrial membrane permeability (Lehninger, 1966).  

It is known that one of the causes of sperm cell damage during cryopreservation 
is the oxidation of SH-groups with the formation of disulfide (-SS-) bonds, leaing 

to protein denaturation. Tumenbaevish et al. (2012) revealed that the S-
containing compounds increased mobility and survivability of the absolute rate of 

cryopreserved spermatozoa. The best performance was obtained with unithiol, 

dithiothreitol and mercaptoethanol. Additionally, the S-containing compounds 
were able to prevent acrosome damage, peeling and swelling, ruptures of the 

plasma membrane and acrosomal reduction. The S-containing compounds with 

the exeption of cysteine had also a protective effect on the safety and activity of 
the enzyme lactate dehydrogenase in spermatozoa. Study of cytochrome oxidase 

activity showed that all the S compounds reduced the activity of the enzyme 

involved in the terminal part of the respiratory chain, which is associated with 
switching the breathing mostly on aerobic glycolysis. Moreover unitiol, 

dithiothreitol and mercaptoethanol had a significant protective effect on the 

safety of the conjugacy respiration and phosphorylation. The S compounds 
contributed to the suppression of LPO, reducing the intensity of accumulation of 

toxic peroxides, stabilizing thiol enzymes and increasing the viability of gametes 

after cryopreservation (Tumenbaevish et al.; 2012).  
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Experiments conducted by Moroz et al. (1999) with mixed bull sperm showed 
that thiols and dithiols (glutathione, unithiol, cysteine) stabilized the redox 

transitions of pyridine nucleotides and flavoproteins of bull sperm, protecting the 

regulatory mechanisms of energy metabolism from cold injury.  
On the contrary, sulfur dioxide (SO2) is a well-known toxic pollutant to which 

humans and animals may be exposed (Cape et al., 2003).  A decline of the 

seminal quality after exposure to seasonal air pollution consisting primarily of 
SO2 has been reported in the study by Selevan et al. (2000). According to Zhang 

et al. (2006) spermatogenesis was affected in the testes of male rats after SO2 

administration, as demonstrated by structural and functional changes of the 
testicular tissue together with disturbances in the hypothalamic-pituitary-

testicular axis, as the testosterone produced by the Leydig cells plays an 
important role in spermatogenesis (Holstein, 2003). According to the authors, 

each checkpoint response induced by SO2 could be interfering with 

spermatogenesis disturbing normal testosterone levels, thereby reducing sperm 
motility. 

 

ZINC (Zn) 

 

Zinc is an element crucial for the membrane and nuclear chromatin stability as 

well as for the mechanical properties of accessory fibers, tail morphology, and 
sperm motility (Caldamone et al., 1979). Extensive evidence suggests that 

seminal Zn has an important role in the physiologic functions of the sperm cell 

and that its reduced levels result in low seminal quality and subsequent chances 
of fertilization (Caldamone et al., 1979; Colagar et al., 2009).  

Several factors are associated with seminal Zn concentration. Inflammatory 

conditions considerably influence the secretory function of the prostate (Kruse et 

al., 2002), which may result in an impaired turnover and a decreased secretion of 

Zn. Accumulation of toxic heavy metals in testicular tissues may also reduce the 

Zn amount in semen (Ebisch et al., 2006; Akinloye and  Orowojolu, 2006). 
Many investigators have shown that chronic prostatitis is associated with a drop 

of the Zn content within the prostatic fluid (Wong et al., 2001). Frequent 

ejaculation is antother possible factor that can reduce the seminal plasma Zn 
levels (King et al., 2000). Low Zn content of semen may generally affect the 

semen quality in different ways. Some mechanisms include reduced antioxidant 

capacity (Prasad et al., 2004) or counteracting the effects of other heavy metals 

(Battra et al., 2001). 

Zn is present both in spermatozoa and in seminal plasma, with a concentration 

considerably higher than in the other body fluids (Marzec-Wróblewska et al., 

2012). The total content of Zn in mammalian semen is high and has been found 

to be critical for spermatogenesis (Colagar et al., 2009).  Calvin et al. (1975) 

state that Zn is concentrated especially in the tail region of the sperm cell.  
Zn in immature spermatozoa is mainly located in outer dense fibres of the 

flagellum, where it is bound to the sulphhydryl groups of cysteine. The majority 

of its content is reduced during epididymal sperm maturation, which leads to an 
increased stabilization of the outer dense fibre proteins by oxidation of 

sulphhydryl groups to disulphide bridges. This stabilization of outer dense fibre 

proteins seems to be an essential step for the generation of sperm motility, 
especially progressive motility (Henkel et al., 1999). 

Furthermore, Zn is involved in the control of sperm motility through its 

association with ATP during contractions and its regulative effects on the 
phospholipid energy reserves (Barber et al., 2001). 

Zn is a vital component of enzymes involved in steroidogenesis. Additionally, it 

has been shown that Zn may act indirectly through the pituitary to regulate the 
gonadotropic hormones (Hurley and Doane, 1989). 

In case of a Zn deficiency, research has shown that the amounts of Zn found in 

the testis, epididymis, and dorsolateral prostate are reduced drastically (Millar et 

al., 1958). 

As shown by Colagar et al. (2009), fertile subjects displayed significantly higher 

levels of Zn in their seminal plasma than the infertile groups. Dissanayake et al. 

(2010) state that pathozoospermia is associated with low-seminal plasma Zn 

levels. Moreover it was noticed that the seminal fluid with higher percentage of 

motile spermatozoa contains plasma with higher Zn concentration (Wong et al., 

2001).  

Lower concentrations of Zn occur in asthenozoospermic and 
oligoasthenozoospermic patients (Zhao and Xiong, 2005), while men with low 

Zn levels in the blood serum are more exposed to the risk of asthenozoospermia 

(Yuyan et al., 2008). 
Some authors have observed high concentration of Zn to be associated with 

enhanced sperm parameters, including sperm count (Edorh et al., 2003; 

Mankad et al., 2006), motility (Fuse et al., 1999) and normal morphology (Chia 

et al., 2000; Edorh et al., 2003). Zhao and Xiong (2005) noticed a positive 

relationship between poor production of sperm and sperm motility with a lower 

content of Zn in the seminal plasma of infertile subjects. Deng et al. (2005) 

reported that Zn treatment had a positive effect on sperm motility, and 

supplementation of Zn proved to be an effective method for the treatment of 

infertile males with chronic prostatitis. According to Kumar et al. (2006), 
experiments with Zn-supplement-fed bulls led to a higher semen volume, sperm 

concentration, percentage of live sperm and motility. 

A direct connection between Zn and sperm morphology was also suggested 
(Massányi et al., 2005), based on an inverse relation between the percentage of 

broken flagellum and a decreased Zn content (Massányi et al., 2004).  

Many studies however could not find any significant association between the 
total Zn in seminal plasma and sperm quality (Bakalczuk et al. 1994; Lin et al., 

2000; Wong et al., 2001). According to Sorensen et al. (1999), high Zn 

concentration exhibited inhibitory effects on the progressive motility of 
spermatozoa, but not on the percentage of motile spermatozoa, whereas 

Danscher et al. (1978) reported high Zn concentration to be associated with poor 

motility of sperm. 
Bakst and Richards (1985) demonstrated that adding ZnSO4 in vitro to turkey 

semen suppressed the sperm O2 uptake, but did not affect the general male 
fertility. Therefore, Zn may have functioned as a metabolic inhibitor on turkey 

semen, thereby decreasing sperm motility and prolonging survivability in the 

sperm storage tubules (Barber et al., 2005). 
Evidence suggests that Zn has antioxidant effects, as one of the consequences of 

Zn deficiency may be an increase in oxidative damage induced by reactive 

oxygen species (ROS) (Zago et al., 2001). Zn is an essential component of the 
Cu/Zn SOD, which has potent antioxidant effects on the sperm function (Ebisch 

et al., 2007). Zn, through its competition with Cu and Fe for the membrane 

binding sites, reduces the potential for the formation of the hydroxyl radicals via 
redox cycling (Zago et al., 2001). High levels of seminal ROS may decrease the 

effective concentration of seminal Zn (Powell, 2000). Several studies support this 

hypothesis, noting that a decrease in the Zn concentration may lead to an increase 
in oxidation of DNA, proteins, and lipids, causing the loss of spermatozoa 

membrane integrity and that Zn has an important role in the inhibition of seminal 

oxidative stress (Oteiza et al., 1995; Powell, 2000; Marzec-Wróblewska et al., 

2012). 

 

SELENIUM (Se) 

 

Selenium is an essential trace element occurring in organic and inorganic forms  

(Moslemi and Tavanbakhsh, 2011). Se appears in higher concentration in 
semen than in the seminal plasma and affects the sperm concentration as well as 

the percentage of normally formed sperm (Hawkes and Turek, 2001; Akinloye 

et al., 2005). Seminal plasma Se presumably originates from epithelial secretions 

of the accessory sex glands (prostate gland, seminal vesicles, and epididymis) 

(Hawkes and Turek, 2001). Inorganic Se was found to be better and more easily 

metabolized as well as incorporated than the organic form (López et al., 2011).  
Se is generally associated with amino acids, especially cysteine (selenocysteine) 

and methionine (selenomethionine) (Marzec-Wróblewska et al., 2012). 

Selenodeiodinase enzymes (types I, II, and III iodothyronine deiodinases) control 
the metabolism of thyroid hormones, which in turn are essential for normal 

development (Defranca et al., 1995) and function (Latchoumycandane et al., 

1997) of rat testes. In humans, adult hyperthyroidism has been associated with 
increased luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 

responses to exogenous gonadotropin-releasing hormone, increased sex hormone-

binding globulin, and an increase in libido, whereas adult hypothyroidism has 
been associated with testicular resistance to gonadotropins, decreased 

testosterone and sex hormone binding globulin, diminished libido and impotence 

(Jannini et al., 1995).  
Se deficiency has been linked to reproductive problems in rats, mice, chickens, 

pigs, sheep, and cattle (Combs and Combs, 1986), as Se is required for normal 

testicular  development and spermatogenesis in rats (Behne et al., 1996), mice, 
and pigs (Combs and Combs, 1986). Furtmermore, selenoproteins participate in 

the maintenance of the sperm structure integrity (Moslemi and Tavanbakhsh, 

2011).  
Se, in the form of selenocysteine, represents the catalytic center in the active sites 

of at least 9 human enzymes, including 4 glutathione peroxidase antioxidant 

enzymes (Mills, 1959; Chu et al., 1996). In rat and human testes and seminal 
vesicles, Se is converted to phospholipid hydroperoxide glutathione peroxidase 

(PHGPx), which is present as a soluble peroxidase in the spermatids but persists 

in mature spermatozoa as an enzymatically inactive, oxidatively cross-linked, 
insoluble protein. In the midpiece of mature spermatozoa, PHGPx protein 

represents at least 50% of the capsule material that embeds the helix of 
mitochondria. (Roveri et al., 1992; Lei et al., 1997; Ursini et al., 1999). 

On the other hand, Se itself is also an antioxidant, as increasing Se concentrations 

encourage the antioxidant GSH-Px activity, thus decreasing ROS and leading to 
increased male fertility (Irvine, 1996). Se could also protect against oxidative 

DNA damage in somatic cells (Haegele et al., 1994; Xua et al., 2003). 

Additionally, GSH-Px protects cellular membranes and lipid-containing 
organelles from peroxidative damage by inhibition and destruction of 

endogenous peroxides. GSH-Px catalyzes the breakdown of hydrogen peroxide 

(H2O2) and certain organic hydroperoxides released by GSH during the process 
of redox cycling. GSH is vital to sperm antioxidant defenses and has exhibited 

positive effects on sperm viability (Irvine, 1996).  Se and GSH are essential for 

the formation of the GSH-Px, as deficiencies of either substance can lead to 
instability of the spermatozoa mid-piece, resulting in defective motility (Ursini et 

al., 1999). 

Moreover, Se can immobilize the toxically active excess of metals that 
accumulate mostly in parenchymal organs (e.g. Hg, Pb, Ag, Ta); however, this 
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may appear disadvantageous for the general metabolism (Pasternak and 

Floriańczyk, 1995; Kabata-Pendias and Mukherjee, 2007).  

For many years, reports have shown that Se deficiencies may cause an impaired 

male fertility in cattle, boars, rats, and mice (Xua et al., 2003).  Although it is 
difficult to deplete testes of Se because of the organ’s affinity for the element, 

sperm from second and third generation Se- deficient rats were largely immotile 

and showed a high incidence of sperm midpiece defects due to disorganization of 
the mitochondrial helix (Spallholz  et al., 1981). Serum Se was reported to be 

low in men with oligospermia and azoospermia (Krsnjavi et al., 1992). Se-

deficient cattle exhibited reproductive disorders, including weak or silent periods,  
poor fertilization (Corah and Ives, 1992), reduced sperm (Olson, 1995) and 

uterine motility (Smith and Akinbamijo, 2000). Saarenen et al. (1989) also 
noticed correlations between low sperm Se content and abnormal morphology as 

well as motility of bovine spermatozoa. Moreover, Se administration to subfertile 

patients induced a statistically significant rise in sperm motility (Foote, 1999) 
and improved the reproductive performance in sheep and mice (Shen et al., 

1999). 

Se added directly to spermatozoa in vitro may also alter the sperm function. 
Incubation of ram spermatozoa with selenite, selenocysteine and 

selenomethionine significantly improved the sperm motility and oxygen 

consumption (Alabi et al., 1985). Furthermore, Se supplementation increased the 
motility of spermatozoa cultured in the presence of hexavalent chromium 

(Ramamoorthi et al., 2008).  

Conversely, reports have shown that the male reproductive system is quite 
sensitive to excessive levels of Se. Ingestion of 2 to 4 ppm of Se for 5 weeks by 

rats caused a dose-dependent reduction in testicular and cauda epididymis as well 

as body weights. The same experiment showed that the sperm concentration, 
motility, and percentage of live spermatozoa decreased, with an immediate 

increase in the percentage of atypical sperm (Kaur and Parshad, 1994). At the 

same time, several reports associate the high seminal plasma Se with impaired 
sperm motility in humans as well as in animlas (Takasaki et al., 1987; Hansen 

and Deguchi, 1996). Inversely, Wirth et al. (2007) have not found any Se 

impact on any of the examined quality parameters of human spermatozoa. This is 
consistent with observations from rat studies in which the Se content of testes 

was unchanged by dietary Se deficiency or excess (Behne et al., 1996). As 

shown by Shalini and Bansal (2008) both excess and deficiency of Se in the diet 

caused a reduction of murine sperm concentration and motility. Supplementation 

of human and rat diet with Se has also been reported to cause a decrease in sperm 

motility (Kaur and Parshad, 1994; Hawkes and Turek, 2001). Marin-

Guzman et al. (2000) observed a decline in boar sperm motility when 0.3 to 0.9 

ppm of Se was added to the semen samples. According to Scott et al. (2008), 

human sperm motility appeared to be the greatest at a Se concentration of 50-69 
ng/mL, however when the Se level was less than 36 ng/mL, the risk of male 

infertility was higher. At the same time, levels above 80 ng/mL were associated 

with abortions or miscariage.  

 

COPPER (Cu) 

 

Copper is an important microelement playing numerous roles in a variety of 

physiological and regulatory processes (Dobrzanski et al., 1996). It is involved 

as an integral part of enzymes active in redox processes (ferroxidases, tyrosinase, 
lysyloxidase) (Massanyi et al., 2003) and cellular respiration (cytochrome-

oxidase). Besides, Cu is associated with the cardiac function, bone formation, 

connective tissue development, neurotransmitter biosynthesis, peptide hormone 
maturation, pigmentation of tissues, as well as myelination of the spinal cord 

(Agarwal et al., 1990; Georgopoulos et al., 2001). 

Cu has direct effects on Fe absorption and metabolism and thus it indirectly 
affects the haemoglobin biosynthesis (Georgopoulos et al., 2001). It is strongly 

bioaccumulated (Andreji et al., 2006), especially within the liver and 

reproductive organs. Its deficiency or toxicity may lead to physiological 
abnormalities with the Cu concentration in the body being connected to its 

concentration in food and environment (Georgopoulos et al., 2001). 

Within the organism, Cu is usually bound in ionic forms. It is pointed out that 
abnormal levels of this metal may affect spermatogenesis with respect to the 

sperm production, maturation and fertilizing capacity (Wong et al., 2001; Cheah 

and Yang, 2011).  

Cu appears to be involved in spermatozoa mobility and it may also act on the 

pituitary receptors which control the release of LH. In the seminal fluid, the Cu 
concentration appears to fall in cases of azoospermia and to increase in oligo- and 

asthenozoospermia (Pleban and Mei, 1983; Skandhan, 1992). A positive 

correlation between the Cu concentration in the seminal plasma and sperm 
motility observed by Eghbali et al. (2008) was in agreement with the reports by 

Skandhan (1992) and Massányi et al. (2005). Also, a weak but positive 

correlation between blood Cu and sperm motility was detected by  Wong et al. 

(2001). A positive effect of Cu on the sperm concentration and count was also 

noticed. Men with sperm concentrations above 40 million/ml showed a higher Cu 

seminal concentration than men with azoospermia (Jackenhovel et al., 1999). 
Positive correlations were noticed between the Cu concentration in blood, sperm 

count in the ejaculate, spermatozoa with progressive motility, as well as between 

the Cu concentration in the seminal plasma and the volume of ejaculate, 
spermatozoa motility and progressive motility (Machal et al., 2002). Inversely, 

no significant differences in the effect of Cu concentration were found in 
teratospermic and normozoospermic men (Kwenang et al., 1987). Pant and 

Srivastava (2003) reported no significant difference in the Cu levels among 

different infertile categories. They did however observe a positive correlation 
between Cu and fructose in oligoasthenospermic and azoospermic men, 

respectively.  

Cu is necessary for many enzymes including the cytosolic dimeric Cu/Zn SOD, 
a dominant antioxidant preventing the deleterious effects of ROS on spermatozoa 

(Semczuk and Kurpisz, 2006).  

Cu within a normal physiologic range is essential for the male fertility, yet its 
high level is detrimental to sperm morphology (Cheah and Yang, 2011). Toxic 

effects of Cu on semen has often been reported. Cu reduces the oxidative 
processes and glucose consumption, which in turn reduces or abolishes 

spermatozoa motility (Skandhan, 1992; Pesch et al., 2006). 

Excessive Cu can inhibit the oxidation and zymolysis of spermatozoa, and thus 
compromise their activity. Furthermore, Cu is reported to be able to kill 

spermatozoa directly, as well as to inhibit their mobility and nidation of the 

zygote (Wang et al., 2005).  
In boar semen, Cu can inhibit enzymes with functional sulfidryl groups, bind to 

and affect the confirmation of nucleic acids, disrupt pathways of oxidative 

phosphorylation, although the precise response depends upon the individual 
properties of the metal (Massanyi et al., 2003). High concentration of Cu usually 

has a harmful consequence on the reproductive system, which is connected to the 

structure of the testes as well as the spermatozoa function (Machal et al., 2002).   
Toxic effects of Cu on the seminal plasma are manifested in the decrease of 

motile spermatozoa and an increase of sperm malformations (Massanyi et al., 

2005). Maynard et al. (1975) reported that the contact of spermatozoa with 
copper ions (Cu2+) is probably responsible for their decreased motility. Cu 

chelation complexes suppress spermatogenesis (Oster and Salgo, 1979) and their 

high concentrations have a toxic effect on the spermatozoa motility (White and 

Rainbow, 1985; Viarengo et al., 1996).  

Dhami et al. (1994) pointed out the controversial in vitro impact of Cu on 

spermatozoa motility. Roychoudhury and Massanyi (2008) demonstrated the 
negative influence of CuSO4 on the rabbit semen motility and subsequently 

confirmed changes in male reproductive functions. Experiments by Knazicka et 

al. (2012) resulted in similar observations confirming that Cu is a toxic element 

on bovine spermatozoa motility at high doses. Roychoudhury et al. (2010) 

found that doses above 3.70 μg/mL CuSO4 have a negative effect in relation to 

the spermatozoa motility, morphology and membrane integrity. Sinohara et al. 

(2005) recorded significant correlations among the Cu content in semen and 

spermatozoa concentration, semen volume and abnormal morphology. Incubation 

with the metal caused a fall in the percentage of motile spermatozoa, which was 
directly related to the surface area of Cu at employed and to the Cu amount in 

whole semen. Low concentrations of copper ions caused a less significant fall in 

spermatozoa motility, although the metal was generally more toxic than Zn or 
cadmium ions. 

According to Rebrelo et al. (1996) motility, viability and acrosome reaction in 

spermatozoa incubated for 5 h were significantly affected by Cu at a 
concentration of 100 μg/mL, but not at lower concentrations. Moreover, 

incubation of spermatozoa in a Cu-containing solution caused a fall in the Mg 

concentration in the nucleus and acrosome regions (Battersby et al., 1982) and a 
decrease of the Na content in the head and mid-piece, as well as a decrease of the 

K and Zn amount in the head while augmenting the Cu level (Maynard et al., 

1975). Cu in combination with Zn decreased the quantity of glucose utilized by 
spermatozoa and the quantity of glucose oxidized, causing the accumulation of 

lactate (Holland and White, 1980). Vrzgulová et al. (1995) also observed a 

negative impact of Cu on the microscopic structure of the testes. Additionally, the 
accumulation of Cu by spermatozoa caused a significant decrease in the protein 

level and increase in the catalase activity (Marzec-Wróblewska et al., 2012).  

 

IRON (Fe) 

 

Iron is an essential component of a group of heme proteins active in oxygen 
transport or as enzymes within the redox system. A small amount of Fe is present 

in several nonheme metalloenzymes (Kaplan et al., 2002). Furthermore, it is 
needed for cyclo-oxygenases, cytochromes, many hydoxylase/oxidase enzymes, 

ribonucleotide reductase, aconitase, succinate dehydrogenase, catalase, and many 

others (Aydemmir et al., 2006). The major complexes coordinating Fe with the 
cell are heme and heme-containing proteins, hemosiderin and ferritin (Sarafanov 

et al., 2008).  

Regulation of the Fe content of the body is achieved by controlling Fe uptake in 
the gut (Aydemmir et al., 2006). In vertebrates, Fe is transported within the 

organism between the sites of absorption, storage and utilization essentially by 

transferrin which can bind up two atoms of Fe reversibly and very tightly (Dorea, 

2000; Nevo and Nelson, 2006; Wallander et al., 2006). 

Fe is indispensable for life, as Fe proteins are essential for oxygen and electron 

transport, cell respiration, DNA synthesis, energetic reactions, and nitrogen 
fixation (Nevo and Nelson, 2006; Wallander et al., 2006). Fe participates in the 

processes of oxygenation and reduction, entering into the composition of many 

enzymes and metalloprotein compounds. The general function of Fe in the cells 
is protection against toxic products of oxygenation reactions. Both, absorption 

http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=sperm+motility
http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=sperm+motility
http://www.scialert.net/asci/result.php?searchin=Keywords&cat=&ascicat=ALL&Submit=Search&keyword=nucleic+acids
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and metabolic function of Fe are linked to other chemical elements. A particular 
antagonistic activity is exerted by Cd, Mn, Pb and Zn. Interactions with Cu are 

complex and frequently synergetic during their cooperation in the oxidation and 

reduction processes (Marzec-Wróblewska et al., 2012). 
Testicular Fe represents the accumulation of ferritin, where Fe is safely stored 

within the Leydig cells. Little is known about ferritin, the Fe storage protein 

(Carreau et al., 1994), even though it has been identified in the testes (Mazur 

and Shorr; 1950). Fe (due to its cellular toxicity in ionic form) is bound to 

transferrin as a transport protein. The Fe-transferrin complex is internalized 

through a transferrin membrane receptor and, after internalization, it dissociates 
Fe to cellular Fe storage proteins until further use (Harrison and Arosio; 1996). 

Studies on the Fe transport into the testes via the transferrin receptor have 
focused primarily on the Sertoli cell function (Toebosch et al., 1987), but the 

Leydig cell through its storage of Fe via ferritin may also play a role in the Fe 

homeostasis and may be a primary source of Fe for the Sertoli transport to 
developing sperm. Storage of Fe in Leydig cells also provides an extra layer of 

protection to germinal cells and still maintains easy availability of Fe to the 

Sertoli and germ cells. The demands for Fe are the greatest during sperm 
production (Wise et al., 2003). 

Fe deficiency reduces the activity of iron-containing and iron-dependent enzymes 

(Mudron et al., 1996), with a subsequent  impact on the overall fertility status, as 
well as normal growth and development of the foetus (Dorea, 2000). In general, 

semen contains a certain amount of Fe, as its physiological level is required for a 

normal spermatozoa production. According to Eghbali et al.(2010b), the total Fe 
content of the buffalo seminal plasma was highly associated with sperm motility 

and viability. They came to the conclusion, that the Fe content within the seminal 

plasma is important for the preservation of sperm motility and viability after 
ejaculation, and its presence will help spermatozoa to maintain their functions. 

Disproportionate levels of divalent ferrous iron (Fe2+) reduce the testicular size 

(Lucesoli et al., 1999). According to Kňažická et al. (2012) lower 
concentrations of FeSO4 (≤ 250 μmol/dm3) sustained the spermatozoa motility 

and energy metabolism, which are key factors supporting the spermatozoa 

function. Additionally, the authors found that iron at low concentrations (≤ 62.50 
μmol/dm3) increased the overall percentage of motile spermatozoa. 

Although Fe and its compounds are primarilly not toxic for animals and humans, 

its overload can bear negatively on the organism (Perera et al., 2002). 

Disturbances in the regulative absorption mechanism can appear due to 

pathological conditions or prolonged intake of high Fe doses. In these cases Fe is 

bound in the form of ferric phosphate (haemosiderin) or into proteins, and is 
distributed into the liver (Semczuk and Kurpisz, 2006; Kabata-Pendias and 

Mukherjee, 2007). Its toxicity may be connected to the catalysis of many 

deleterious reactions in the cells and tissues (Reilly, 2004). High doses of Fe 
could affect a wide range of mechanisms (Defrere et al., 2008), lead to tissue 

damage (Reilly, 2004) or lesions (Defrere et al., 2008).   

Increased Fe concentration can bear negatively on the morphology and DNA 
integrity of spermatozoa (Perrera et al., 2002; Massányi et al., 2004). 

Significant differences in the Fe concentration between sperm of severely 

teratospermic subjects were reported in contrast to no differences in 
normozoospermic subjects (Kwenang et al., 1987). 

Fe administration to rats may result in testicular atrophy, morphological changes 

in the testes, impaired spermatogenesis, epididymal lesions and impaired 
reproductive performance (Crawford, 1995; Whittaker et al., 1997). The 

mechanism(s) involved in the production of testicular changes by Fe is not fully 

understood. Fe accumulation is associated with either acute or chronic Fe 
overload leading to a subtle Fe increase in the testes, subsequently associated 

with oxidative damage to lipids, proteins and DNA (Lucesoli and Fraga, 1995; 

Lucesoli et al., 1999). 
Furthermore, as serum ferritin is highly correlated with the presence of 

hypogonadism (Papadimas et al., 1996), excessive Fe is destructive to the 

testicular function and spermatogenesis (Merker et al., 1996; Lucesoli et al., 

1999), and smaller testes and reduced sperm production may be related to the 

elevated Fe concentrations.  

Fe overload may increase oxidative stress in testes and epididymal sperm 
possibly causing infertility (Huang et al., 2001). High FeSO4 doses (> 200 

μmol/dm3) in vitro decreased all the motility parameters of bovine spermatozoa 
in relation to time, however without any cytotoxic effect on the mitochondrial 

complex, with a potential toxicity reflected in other molecular pathways 

(Kňažická et al., 2012). 
Moreover, Comaschi et al. (1989) and Aitken et al. (1993b) demonstrated that 

ferrous ions may catalyse the breakdown of pre-existing lipid hydroperoxides in 

spermatozoa with a subsequent propagation of LPO chain reactions through the 
generation of peroxyl and alkoxyl radicals. Also, in the presence of ROS, Fe can 

be released from binding proteins, inducing oxidative stress and ascorbate 

oxidation (Boyer and McCleary, 1987; Halliwell and Gutteridge, 1990). 
Elevated Fe concetrations might indicate an increase of the ROS generation, as 

suggested by Aydemir et al. (2006), according to who, the serum Fe 

concentrations were positively correlated with spermatozoa malondialdehyde 
(MDA) and abnormal morphology. 

 

 
 

MANGANESE (Mn) 

 

Manganese is an ubiquitous transition metal found naturally in the environment. 

It is also released into the air from mining and manufacturing operations and 
from combustion of gasoline additives. Human exposure to ambient levels of Mn 

is universal and occurs mainly via air and dust exposures (Wirth et al., 2007).  

Mn is required for ubiquitous enzymatic reactions. It has a unique redox 
chemistry, with several accessible oxidizing states (Armstrong, 2008). High 

intracellular Mn levels protect against oxidative damage in various organisms 

(Reddi et al., 2009). ROS scavenging activity of Mn related to a rapid quenching 
of peroxyl radicals has been demonstrated in several studies proving that Mn may 

protect from Fe induced oxidative stress (Srizaki et al., 1998). It could reduce the 
ferrous-ascorbate mediated LPO in placental membranes (Anand et al., 2001) 

leading to an increase of the Fe level, providing a direct evidence towards Fe-

mediated LPO (Chen et al., 2006). 
Antioxidant and protective effects of Mn against LPO have been studied in 

various biological systems (Srizaki et al., 1998; Campanella et al., 2005; Chen 

et al., 2006). High intracellular Mn provides protection against oxidative damage 
through currently unknown pathways and recently it has been found that for 

protective reasons the metal is provided by the Nramp transporters (Reddi et al., 

2009).  
Poranen et al. (2008) clarified that the structural flexibility caused by Mn is also 

important for the enzymatic dynamics, as Mn is required for RNA 

polymerization. It activates several polymerases at low concentrations, but 
inhibits them at higher concentrations. 

Mn is an essential element for humans in small quantities, although its 

overexposure may be toxic to reproductive health (Lapointe et al., 1996; 

Anderson et al., 2007; Liu et al., 2009). 

The absence of Mn may lead to the inhibition of enzymatic systems required for 

sperm motility. Lafond et al. (1988) reported lower Mn levels in the seminal 
plasma from men with lower sperm density. Among 52 male partners of infertile 

couples, normospermic infertile patients had higher serum Mn levels compared to 

those with oligospermia or azoospermia (Adejuwon et al., 1996), suggesting 
a potential role of Mn in the evaluation of infertile males. 

Cheema et al. (2009) and Lapointe et al. (1996) observed beneficial effects of 

0.1 mM MnCl2 for the maintenance of sperm motility without detrimental effects 

on the mucus penetration or fertilizing ability and hypothesized that Mn could 

have an effect on the sperm adenylate cyclase activity leading to an increased Ca 

concentration and motility. Furthermore,  Mn supplementation resulted in a 
significant improvement of the post-thaw motility and hypoosmic swelling of 

frozen cattle bull spermatozoa in a dose dependent manner. Similarly, addition of 

Mn to human washed spermatozoa resulted in a stimulation of progressive 
motility in a time and dose dependent manner (Magnus et al., 1990b). Moreover, 

positive effects of Mn have been studied on buffalo and cattle bull spermatozoa 

incubated with lipid peroxidation catalysts (Singh et al., 1989; Bilaspuri and 

Bansal, 2008). 

Mn proved to be efficient against formaldehyde toxicity-induced spermatozoa 

abnormalities and oxidative stress (Zhou et al., 2006; Tajaddini et al., 2013). 
Eybl and Kotyzova (2010) showed that Mn pre-treatment in acute cadmium 

intoxication significantly protects the testes against oxidative damage in vivo.  

According to Cheema et al. (2009) the supplementation of Mn could reduce the 
level of MDA production significantly in cooled and frozen-thawed spematozoa, 

but to a maximum level on addition of 200 µM of Mn. An in vitro experiment 

using semen  from healthy males found that Mn supplementation improved the 
total thiol and reduced GSH levels under normal and oxidative stress conditions 

(Bansal and Kaur, 2009). Other studies using semen samples obtained from  

normozoospermic donors found that a specific superoxide scavenger, named 
Mn+3 tetrakis (1-methyl-4-pyridyl) porphyrin, could attenuate the effects of 

superoxide on sperm motility parameters (Aboua et al., 2009).  

In contrast, results of animal experiments and studies of human occupational Mn 
exposure have indicated that exposure to high levels of the metal might impair 

male fertility. One study reported that high Mn levels were associated with 

erectile dysfunction, however  involving workers with severe sickness induced by 
occupational exposure to Mn (Guiying, 2000). The damaging effects of Mn on 

male reproductive function have been mainly examined in occupationally-
exposed men, and showed prolonged time to semen liquefaction and decreased 

sperm motility among workers in contact with Mn, and decreasing percentage of 

motile sperm with increasing duration of employment as a miner (Yue and 

Fuming, 1997). In workers who had been in contact with Mn for more than 10 

years, the activities of protective enzymes such as CAT were lower than in 

controls, suggesting that high Mn levels might result in a decreased activity of 
antioxidant enzymes, resulting in subsequent oxidative damage (Gao et al., 

2006).  

In a study by Wirth et al. (2007) high Mn levels were associated with an 
increased risk of low sperm motility and low sperm concentration. There are thus 

conflicting results regarding the effects of Mn on semen quality in infertile men, 

and more studies are needed to explore the dose threshold values for infertility. 
Furthermore, occupational studies found that chronic high Mn levels in male 

workers resulted in impotence (Penalver, 1955), decreased birth rates 

(Lauwerys et al., 1985) and decreased semen parameters (Penalver, 1955). 
Elbetieha et al. (1997; 2011) postulated that ingestion of high doses of MnCl2 by 
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male and female mice had adverse effects on fertility and reproduction. 
Moreover, MnSO4 adversely affected the semen quality index and sperm viability 

in broiler breed semen in vitro (Barber et al., 2005). 

Huang et al. (2001) showed that 500 ppm Mn significantly inhibited the sperm 
motility but with no accompanying change in seminal MDA levels. According to 

the results by Li et al. (2012), the negative impact of high Mn levels on sperm 

viability, progressive motility, and morphology were more obvious than the 
beneficial effects. Furthermore, animal and in vitro experiments indicate that high 

Mn exposure decreases sperm motility and concentration (Huang et al., 2001; 

Ponnapakkam et al., 2003) possibly via membrane LPO (Yiin et al., 1996).  
 

MOLYBDENIUM (Mo) 

 

Molybdenium is an ubiquitous trace element found in food, drinking water and is 

present in multivitamin/multimineral supplements (Vyskocil and Viau, 1999). It 
is used in manufactures of electric and electronic parts, glass, ceramic, lubricants, 

dyes, catalysts and pigments (Padney and Singh, 2002). 

Mo is an essential, trace and micronutrient element, which plays an important 
role in animal physiology (Schroeder et al., 1962; Pennington and Jones, 

1987). It is a constituent of at least three mammalian metaloflavoproteins 

(xanthine oxidase, aldehyde oxidase and sulphite oxidase) as well as nitrate 
reductase (Schroeder et al., 1962; Padney and Singh, 2002), all of which are 

involved in protein synthesis, metabolization of fats and carbohydrates, 

detoxification of preservatives and sulfites, as well as the mobilization and 
utilization of Fe in the body, with subsequent direct effects on biological 

processes controlling growth and reproductive performance (Vyskocil and Viau, 

1999; Padney and Singh, 2002). Mo is known to act as an anticarcinogen (Luo 

et al., 1983). 

However, the reproductive toxicity of Mo has been postulated in several animal 

studies.  A decreased male fertility was observed in rats exposed to high levels of 
Mo for 13 weeks (Vyskocil and Viau, 1999; Padney and Singh (2002). In a 

recent study of catfish from polluted waters, Yamaguchi et al. (2007) found 

significant inverse associations between the tissue Mo concentration and 
gonadosomatic index. Accoring to Meeker et al. (2008), the Mo content in 

human blood plasma was negatively correlated with total motile sperm and with 

normal sperm morphology. Furthermore, Mo in pair with Cu were evaluated as 

significant risk factors in the final model for sperm morphology. Padney and 

Singh (2002) observed no mortality in rats exposed orally to sodium molybdate, 

indicating no acute toxicity of Mo. However, the decrease in body organ weight 
gain profile (testes, epididymides, seminal vesicles and prostate gland) of rats 

might be due to cellular loss during the histopathological changes.  

Moreover, decreased activities of testicular enzymes related to the germinal 
epithelium and Sertoli cells indicate damage to these particular cell types by 

different doses of Mo in a dose dependent manner (Pandey et al., 1999). These 

observations are well supported with histopathological examinations indicating 
degeneration of seminiferous tubules, disturbed spermatogenesis, increase in 

intertubular spaces and either few or a complete absence of spermatozoa (Saxena 

et al., 1990; Pandey et al., 1999).  Furthermore, it has been concluded that the 
Sertoli cell damage may be responsible for the germ cell degeneration 

(Srivastava et al., 1990; 1992). A significant reduction in total epididymal sperm 

count and sperm motility, with different doses of sodium molybdate, may be due 
to direct reprotoxic effects of Mo. The increased percentage of morphological 

abnormalities, observed in different regions of spermatozoa  by Sobti and Gill 

(1989) following sodium molybdate exposure, may be due to the toxic potential 
of this heavy metal (Pandey and Srivastava, 2000). According to Working et 

al. (1985a) male rats exposed to Mo were able to impregnate unexposed females 

but comparatively in lower number. The recorded decrease in male fertility has 
been attributed to a direct cytotoxic action on the testes resulting in an increase in 

sperm abnormalities. 

Animal studies also suggest interactions between Mo and other minerals, 
especially Cu. Mo has a chelating effect on Cu and has been associated with 

impaired Cu use in animal studies (Lyubimov et al., 2004); also, individuals who 

are deficient in Cu intake or have a Cu metabolism dysfunction may be at 
increased risk for Mo toxicity (Meeker et al., 2008). In a study of rams, Van 

Niekerk and Van Niekerk (1989) found a lower semen volume and sperm 
concentration, motility and morphology in a Cu-deficient group, created through 

supplementation with Mo and sulfate, compared with a control group that was 

given additional Cu supplementation. The semen quality returned to normal when 
the Cu deficiency was reversed. Interestingly, dietary Cu supplementation 

prevented the adverse effects on sperm at the same high Mo dose levels 

(Lyubimov et al., 2004).  
 

COBALT (Co) 

 
Exposure to cobalt can occur through inhalation, oral or dermal routes. 

Mammals, including humans, are exposed to natural sources of Co present in 

food, water and air. In addition to naturally occurring environmental forms, Co 
compounds may also be present in certain occupational settings and in some 

consumer products (Hidiroglou, 1979). 

Co in the chemically distinct form of Vitamin B12 is essential for the organism. 
While humans require Vitamin B12 directly, mammals including domestic farm 

ruminants require the bioavailable Co ion for reproductive health. It is common 
in veterinary and agricultural practice to provide Co salt supplements to ensure a 

sufficient source of bioavailable Co for animal health. Dietary doses of Co that 

are either deficient of over-exposure have been reported to have harmful effects. 
Co deficiency is associated with “wasting disease” in farm ruminants where 

animals fail to thrive and their reproductive output is significantly decreased 

(Kennedy et al., 1996). At the same time, over-exposures to water-soluble Co 
salts (thus the Co ion) have been associated with reproductive toxicity. 

Previous studies have indicated that exposure to Co might cause adverse effects 

on the male reproductive system (Pedigo et al., 1988). In studying the impact of 
Co on male rat reproduction Hoey (1966) observed testicular necrosis of both the 

seminiferous tubules and testicular interstitial tissue after a subchronic exposure 
to Co via daily injections of 0.40 mmole/kg body weight over a 30 day period. 

Testicular atrophy was demonstrated after chronic oral exposure of male rats to 

Co (20 mg/kg body weight) for 69 days (Nation et al., 1983). Chronic Co 
ingestion (20 mg/kg body weight) caused depletion of live sperm and produced 

toxic effects on the germinal epithelium (Corrier et al., 1985). Pedigo et al. 

(1988) showed that chronic exposure to Co dramatically affected the male mice 
fertility in a time-and dose-dependent manner, while acute administration had 

minimal effects. Likewise, continuous exposure of male mice to Co (400 ppm) in 

drinking water resulted in a reproducible, sequential pattern of seminiferous 
tubule degeneration (Anderson et al., 1992). Inhalation of the soluble cobalt 

sulfate caused reduced sperm motility in mice, and at a higher concentration, the 

number of abnormal sperm was increased, while the testicular and epididymal 
weights were decreased (Anderson et al., 1992). 

Occupational exposure to various Co compounds is of concern because of thier 

genotoxic (Madzhariva et al., 2010),  mutagenic (Jensen and Tüchsen, 1990) 
and carcinogenic (Lison et al., 2001) effects.  

Elbetieha et al. (2008) studied the effects of cobalt chloride (CoCl2) on the 

fertility of adult male Swiss mice. General male fertility, as well as the number of 
pregnant females was significantly decreased in the exposed mice. Also, the 

number of viable fetuses was decreased in females impregnated by exposed 

males at the three concentrations. Absolute epididimal and testicular weights as 
well as epididymal and sperm counts together with daily sperm production were 

significantly decreased in males that ingested CoCl2. Histological evaluation of 

the testes revealed several abnormalities including hypertrophy of the interstitial 

Leydig cells, congested blood vessels, degeneration of the spermatogonial cells 

and necrosis of both the seminiferous tubules and the interstitial tissue. In rats 

CoCl2 complexed with histidine, lysine, glycylglycine, EDTA, casein, or glycine, 
being absorbed less then free CoCl2. 

Lukac et al. (2007) and Elbetieha et al. (2008) observed a sloughing of germ 

and Sertoli cells, as well as a shrinkage of the seminiferous tubules after Co 
administration. Formation of empty spaces within the epithelium was also 

observed. Further analysis revealed a significant decrease in the relative volume 

of seminiferous epithelium in Co treated animals, whereas the relative volume of 
interstitium was significantly increased, probably as a consequence of increased 

Leydig cell volume that could predicting elevated testosterone levels (Pavlova et 

al., 2012). Pedigo et al. (1988) presumed that Co interferes with local regulatory 
mechanisms in the testosterone synthesis. 

Besides a possible indirect effect on spermatogenesis is explained by a readily Co 

crossing of the blood-testis barrier. Subsequently, a direct cytotoxic effect of Co 
on spermatogenic and Sertoli cells is possible (Corrier et al., 1985). 

Mollenhauer et al. (1985) suggested that the testicular degeneration was not a 

primary response to Co but the testes become hypoxic due to both the blockage 
of veins and arteries by red blood cells and to the changes in permeability caused 

by thickening of basal lamina. 

These findings suggest that the effects of Co depend on the type of compound 
used and on stability of its complex. Time duration and age of the experimental 

animals are also important (Pavlova et al., 2012). 

 

CHROMIUM (Cr) 

 

Chromium is a naturally occuring elements found in rocks, plants, volcanic dust 
and gases. Cr in the organism is distributed rather regularly in each tissue and is 

necessary for its normal development (Marzec-Wróblewska et al., 2012).  
In humans and animals trivalent Cr (Cr+3) is an essential nutrient playing an 

importnat role in glucose, fat and protein metabolism (Kumar et al., 2005). Cr+3 

is an important component of enzymes and stimulates their mutual activity. 
Trivalent Cr is also postulated to be involved in maintaining the structural 

integrity of nucleic acids (Anderson and Mertz, 1977). The interaction between 

Cr+3 and dichromates greatly reduced the amount of nucleic acids extractable 
from tissues with trichloroacetic acid. This effect was specific for chromates only 

and was not observed with other compunds (Hermann and Speck, 1954). Cr+3 

also protects RNA aganist heat denaturation indicating that this metal may be 
involved in maintaining the tertiary structure of nucleic acids (Fuwa et al., 1960).  

Cr deficiency occurs rarely (Kabata-Pendias and Mukherjee, 2007). Sperm 

cells being rich in nucleic acids might be affected by low levels of dietary Cr. 
According to Anderson and Polansky (1981), male rats raised on a low Cr+3 diet 

had decreased sperm counts and fertility compared to the Cr-supplemented 

controls. Additionally, the frequency of conception was  low. 
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The toxicity of Cr depends on the oxidation state, hexavalent chromium (Cr+6) 
being more toxic than the trivalent form. In addition, Cr+6  is the more readily 

absorbed by both inhalation and oral routes (Assem and Zhu, 2007). 

Chronic exposure to Cr+3 resulted in weight loss, anaemia, liver dysfunction and 
renal failure. Nevertheless, Cr+3 is not considered to be mutagenic in most 

cellular systems and there is no firm evidence that in vivo it is mutagenic or 

carcinogenic to humans or experimental animals. Moreover, studies have not 
shown Cr+3 to be carcinogenic. There is not sufficient evidence to suggest that 

Cr+3 compounds could be reproductive or developmental toxicants (Assem and 

Zhu, 2007) even though according to Al-Hamood et al. (1998), fertility was 
reduced in male offspring exposed to potassium dichromate via their mother 

during gestational and lactational periods. Body weights and weights of testes, 
seminal vesicles and preputial glands were reduced in trivalent-exposed male 

offspring. Furthermore, body, seminal vesicles and preputial gland weights were 

significantly reduced in males exposed to Cr+3 via drinking water for 12 weeks, 
whereas the testticular weight was significantly increased in males exposed to 

these compound (Elbetieha and Al-Hamood, 1997).  

On the other hand, Cr+6 is considered to be a serious toxicant, exposure to which 
is reported to cause pulmonary carcinoma, dermatitis, hepatotoxicity, 

nephrotoxicity and gastrotoxicity in humans and laboratory animals (Foglietta et 

al., 1998; Assem and Zhu, 2007). Cr+6 compounds are positive in the majority of 
in-vitro mutagenicity tests reported and may cause chromosomal aberrations and 

sister chromatid exchanges in humans. Furtermore, Cr+6  has been classified as a 

human carcinogen by the inhalation route of exposure and potassium dichromate 
may be toxic to the reproductive system and the developing foetus (Assem and 

Zhu, 2007). 

In the experiments with monkeys (Macaca radiata  Geoffrey), Cr+6  given in 
drinking water for six months caused a reduction of sperm concentration and 

sperm forward motility (Subramanian et al., 2006). Additionally, laboratory 

mice injected with CrO3 displayed increased a variety of sperm abnormalities 
(Acharya et al., 2006). Simultaneously, decreased sperm counts and percentages 

of motile sperm (Li et al., 2001) as well as increased percentages of 

morphologically abnormal spermatozoa were found in men occupationally 
exposed to Cr+6 (Kumar et al., 2005). At the same time Danadevi et al. (2003) 

recorded negative concentrations between the blood Cr content in males exposed 

to Cr+6 and rapid linear sperm motility and concentration. Semen abnormalities 

correlated with the number of years of exposure to welding fumes containing 

Cr+6. Furthermore, Li et al. (2001) studying the fertility status of male workers 

occupationally exposed to hexavalent Cr+6 recorded that the sperm motility 
decreased, as well as lactate dehydrogenase (LDH), and lactate dehydrogenase 

C4 isoenzyme (LDH-x) in the seminal plasma. FSH was higher than the control. 

On the other hand, there were no significant differences in semen volume, semen 
liquefaction time, luteinizing hormone (LH) level in serum, and Cr concentration 

in both serum and seminal plasma between the exposed workers and the control 

group. Additionally, feeding Cr+6 to rats caused a visible disruption in germ cell 
arrangement near the walls of the seminiferous tubules. The diameters of 

seminiferous tubules in exposed rats were smaller.  

Male welding of stainless steel is associated with an increased risk of 
spontaneous abortions. Mutagenic effects of Cr+6 has been found previously in 

both somatic and germ cells, and the findings could be due to mutations in the 

male genome (Hjollund et al., 2000). The results suggested that damage to 
convoluted seminiferous tubule epithelium, reduction of spermatozoa formation 

and increase in prevalence of teratospermia could be caused by exposure to 

certain concentration of Cr+6 (Li et al., 1999). On the other hand, according to 
Hjollund et al. (2005), no increased risk of spontaneous abortion was found in 

IVF treated women, who became pregnant by men exposed to welding of any 

sort. Also, Hjollund et al. (1998) and Bonde and Ernst (1992) recorded no 
statistically significant differences attributable to welding in proportions of 

morphologically normal sperm, sperm motility assessed by computer-aided 

sperm analysis, or sex hormones (testosterone, FSH or LH).  
Experiments by Aruldhas et al. (2005) and Subramanian et al. (2006) 

performed on monkeys (Macaca radiata) that received drinking water containing 

Cr+6, a negative Cr impact on spermatogenesis mediated by induction of 
oxidative stress was observed. Cr treatment also disrupted spermatogenesis, 

leading to accumulation of prematurely released spermatocytes and spermatids in 
the lumen of seminiferous tubules. Granulation of chromatin and vacuolation 

between the acrosomal cap and manchette microtubules of elongated spermatids 

and in the Golgi area of round spermatids were observed (Pereira et al., 2005). 
The specific activities of antioxidant enzymes (SOD, CAT, GPx, glutathione 

reductase and glucose-6-phosphate dehydrogenase) as well as non-enzymatic 

antioxidants (GSH, vitamins A, C and E) decreased, whilst the testicular 
concentration of H2O2 and hydroxyl radicals increased. Induction of oxidative 

stress in the experiments with mice receiving Cr+6 was also detected (Pereira et 

al., 2005). In men occupationally exposed to Cr+6, decreases of Zn concentration 
in the sperm cells and increases of blood FSH were observed (Li et al., 2001).  

Acharya et al. (2006) suggested that CrO3 exposure suppressed antioxidant 

enzymes and ascorbic acid with a concomitant increase in the level of LPO to 
adversely affect testicular function. Supplementation of vitamin C and vitamin E 

could partially prevent the incidence of abnormal sperm population and increased 

the sperm count. Vitamin C happened to be more effective in ameliorating germ 
cells from degeneration and from mutation to abnormal sperm. Possible 

antioxidative role of both the vitamins have been studied for significant decrease 
in LPO  associated with marked elevation in sperm count level and significant 

decrease in the percentage of abnormal sperm formation in CrO3-treated mice. 

Administration of Cr+6 in adult rats daily for 15 days produced significant 
increases in the blood and testicular chromium levels. Although no light 

microscopic pathologic changes or alterations in epididymal sperm counts and 

motility were observed, lanthanum perfusion in treated rats revealed leakage of 
Sertoli-cell tight junctions under electron microscopy. A few tubules showed 

marked ultracellular alterations in the form of vacuolization of cytoplasm and 

degeneration of mitochondria in the epithelial cells. Late stage spermatids were 
the most affected germ cells. The mitochondrial sheath of the midpiece was 

vacuolated, incomplete, swollen, or broken in places. The observed alterations 
may result in the disruption of normal testicular physiology leading to 

reproductive impairment after chromium exposure (Murthy et al., 1991). 

 

CONCLUSION 

 

Male reproduction and fertility include processes which require strict and rigid 
conditions to produce mature and healthy spermatozoa. One of the requirements 

needed to be fulfilled is the abundance of chemical nutrients which are crucial for 

spermatogenesis, promotion of spermatozoa motility and quality, as well as for 
the Sertoli and Leydig cell development. In addition, some nutritional elements 

are involved during capacitation, hyperactivation, acrosome reaction and oocyte 

fusion. 
Molecular mechanisms of many chemical elements involved in male fertility are 

however still unclear. The deleterious impact of excessive amounts of trace 

minerals are still not completely and clearly known. Researchers should focus on 
experimenting and finding out the critical concentrations and mechanisms of 

these elements in enhancing or ceasing the sperm production and  viability. 

Further studies should be performed, focusing also on the complex relationships 
between chemical elements, enzymatic and nonenzymatic mechanisms, as well as 

other contributing proteins and/or biomolecules. 

At the same time, assessment of  the total seminal concentration of minerals may 
be a useful tool to determine the sperm fertilization potential. Also, evaluation of 

their concentrations in semen of infertile individuals is recommended. 

Furthermore, it is crucial to define a standard and optimal concentration of 

dietary nutrients needed to reach an optimal  testicular growth, spermatogenesis 

and semen quality. Thus, additional investigations on adequate quantities of trace 

minerals for mammalian fertility could lay a strong base for further approaches 
on exploring the best combination of chemical elements with an appropriate 

dosage as a part of the nutritional prevention or therapy of male infertility. 
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