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INTRODUCTION 
 

Lactic acid bacteria (LAB) have been used throughout history for the 
production of value-added fermented food commodities (Brashears et al., 2005). 
In addition, this group of microorganisms constitutes a major part of healthy 
intestinal microbiota (Damelin et al., 1995; Lindgren and Dobrogosz, 1990). 
One of the most interesting applications of incorporating lactic acid bacteria in 
diet is the antifungal capacity of such strains (Batish et al., 1997; Bullerman et 
al., 2006; Gourama and Bullerman, 1997; Hassan and Bullerman, 2008a, b; 
Magnusson and Schnurer, 2001). Lactic acid bacteria strains isolated from 
different sources show promising abilities of inhibiting mold spoilage and 
improving the shelf-lives of final processed products (Corsetti et al., 2000; 
Topisirovic et al., 2006; Valerio et al., 2004; Vaughan et al., 1994). Numerous 
studies imply the capacity of certain isolates of LAB to bind and remove 
mycotoxins (El-Nezami et al., 2002a; Mokoena et al., 2005). The same fact was 
also observed in materials rich in this group of microorganisms such as rumen 
liquids and animal feces (Kiessling et al., 1984; Swanson et al., 1988). 

Recently, our lab reported the isolation of Lactobacillus paracasei subsp. 
tolerans from sourdough starter culture that demonstrated a strong antifungal 
activity against different Fusarium species including Fusarium proliferatum and 
Fusarium graminearum (Hassan and Bullerman, 2008a, b). The objective of 
our current study was to investigate the ability of this particular isolate to reduce 
fumonisin B1 and deoxynivalenol concentrations in liquid-cultures, thus 
providing value-added fermented/malted products. 
 
MATERIAL AND METHODS 
 
Lactic acid bacteria isolation and storage 

 
Lactobacillus paracasei subsp. tolerans was isolated from a traditional 

home-style sourdough bread culture as described earlier (Hassan and 
Bullerman, 2008a). The frozen stock was kept in 20% glycerol at -20oC. The 
isolate was reactivated by streaking on deMan, Rogosa, and Sharpe (MRS) agar 
plates and grown for 24-36 hours at 37oC (Hassan and Bullerman, 2008b). 
 
Testing for mycotoxin detoxification activity 

 
Commercial Lactobacilli MRS broth (Becton Dickinson, Franklin Lakes, 

New Jersey; Cat. # 288130) was used as the testing medium. Stock solutions of 
fumonisin B1 (Sigma-Aldrich, St. Louis, MO; Cat. # F1147) and deoxynivalenol 
(Sigma-Aldrich, St. Louis, MO; Cat. # D0156) were reconstituted to obtain a 2.5 

μg/ml final concentration. Inoculums (10 µl) of activated Lactobacillus paracasei 
subsp. tolerans were added and tubes were kept overnight at 37oC on an orbital 
shaker (150 rpm). Growth of the bacterial cultures was monitored and normalized 
by OD600. The overnight cultures were centrifuged at 10,000 rpm for 10 min. and 
resulting supernatants were filtered through 0.22 μm filters (Millipore, Billerica, 
Massachusetts; Cat. # SLGS033SS). These supernatants were used later for 
mycotoxin analyses as described below. In order to determine the amount of 
mycotoxin that was binding to the bacterial cell-walls, the collected pellets above 
were washed with sterile phosphate buffered saline (PBS) under vigorous shaking 
conditions in order to release any bound mycotoxins. Mycotoxin concentrations 
were also determined in these washing steps. 
 
Mycotoxin binding of heat-inactivated bacteria 

 
To distinguish between cell-wall binding and enzyme-mediated degradation 

of the studied mycotoxins, we first heat-inactivated LAB cells and then 
introduced them to the MRS broth containing fumonisin B1 and deoxynivalenol 
(2.5 μg/ml final concentration). A total of 400 ml’s of MRS broth was inoculated 
with Lactobacillus paracasei subsp. tolerans and grown for 48 hours at 37oC. 
The medium containing the viable bacteria was then autoclaved (30 min. at 121o 

C) and centrifuged at 10,000 rpm for 15 min. The supernatant was discarded and 
the pellet was re-introduced into sterile MRS broth containing 2.5 μg/ml of each 
mycotoxins separately at an optical density (OD600) of 2.25. The mix was kept on 
orbital shaker for one hour before proceeding to mycotoxin analysis. The OD600 
normalization step was essential to make valid comparisons between heat-
inactivated and actively-growing bacteria. The selected optical density value 
(2.25) reflect a similar level of LAB growth after 18 hours of incubation with 
mycotoxin/broth mixtures. Escherichia coli (a kind gift from Dr. Andrew 
Benson, Department of Food Science and Technology, University of Nebraska-
Lincoln) was included also in the above experiments to determine if gram-
negative cell walls possess a similar ability to remove mycotoxins. In all trails, E. 
coli was grown overnight in commercial nutrient broth (Becton Dickinson, 
Franklin Lakes, New Jersey) containing FB1 and DON (2.5 μg/ml) at 37oC on an 
orbital shaker (150 rpm) before cell pellet removal and mycotoxin determination. 
 
Enzyme linked immunosorbant assay (ELISA) measurement of mycotoxins 

 
Neogen-Veratox quantitative fumonisin-high sensitivity (Neogen 

Corporation, Lansing, Michigan; Cat. # 8832) and deoxynivalenol-high 
sensitivity (Neogen Corporation, Cat. # 8332) enzyme linked immunosorbant 
assay kits; EL301 Microwell Reader (Neogen Corporation, Cat. # 9301); and the 
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Neogen's Veratox software were used to quantitatively measure mycotoxin 
concentrations. In essence, a 100 μl portion of the cell-free supernatant/washing 
buffer was serially diluted using 900 μl of sterilized distilled water to reach the 
linear range of the testing kit. Subsequent mycotoxin determinations were 
conducted according to the manufacture’s protocol. The manufacturer‘s provided 
Neogen-Veratox software contains a programmed algorithm that converts 
absorbance values to concentrations expressed as parts per billion (ppb) or parts 
per million (ppm) which were later converted into ng/ml scale taking the dilution 
factors into account. StatView package (Abacus, Cupertino, California; version 
4.57) was used to verify any significant differences between controls and 
treatments. All the reported studies were conducted in triplicates. 
 
RESULTS AND DISCUSSION 
 

The aim of this study was to examine the ability of Lactobacillus paracasei 
subsp. tolerans isolate of detoxifying both DON and FB1 from liquid media. This 
isolate is an efficient acid producer and it shows a promising ability of inhibiting 
wide spectrum of Fusarium species (Hassan and Bullerman, 2008a, b). In this 
study, heat-inactivated cells demonstrated a significant ability to reduce DON in 
MRS broth (Figure 1). 

 
Figure 1 Reduced levels of deoxynivalenol and fumonisin B1 were observed after 

one hour incubation with heat-inactivated bacterial cells of Lactobacillus 
paracasei subsp. tolerans 

 
Under the same conditions, heat-inactivated cells were able also to decrease 

FB1 concentrations in culture broth, but this reduction was not statistically 
significant (Figure 1). Similar abilities of heat-inactivated lactic acid bacteria to 
bind mycotoxins present in solution and liquid cultures have been reported earlier 
(El-Nezami et al., 2000; El-Nezami et al., 2002b; Franco et al., 2011; Peltonen 
et al., 2001; Pierides et al., 2000). Conversely, viable cells of this isolate were 
able to slightly lower the concentration of DON and FB1 concentrations in liquid 
cultures but the reduction was not statistically significant (Tab. 1).  
 

Table 1 Fumonisin B1 and deoxynivalenol concentrations (ng/ml) in culture 
media after 18 hours incubation with Lactobacillus paracasei subsp. tolerans 
at 37o C 

Mycotoxins Group Number of 
samples Mean SEM 

FB1 
Control 3 527  506 292.3 

Treatment 3 513  304 175.7 

DON 
Control 3 1797.7  

137.7 79.5 

Treatment 3 1793.7  
55.6 32.1 

 
The ability of heat-inactivated bacterial cells to bind DON and significantly 

lower its concentrations compared to weak binding of DON to viable cells is 
explained by the pH effect. When viable cells grow actively in the media they 
ferment present carbohydrates, lowering the pH of the medium, which in turn 
affects how DON is adsorbed onto cell surface. Our results in this regard are in 
agreement with the previously published observation by Shehata et al. (2000) 
who showed that DON adsorption ranged from 47 to 99% depending on the pH 
value of the medium. On the other hand, the weak binding of FB1 to the actively 
growing cells is explained by the reduced stability of complexes formed between 
this mycotoxin and cell surface. Tab. 2 clearly shows that complexes formed 
between DON and bacterial cell walls are more stable, hence the minimum 
observed release of DON into the PBS washing buffers. 

 
 
 

Table 2 Fumonisin B1 and deoxynivalenol concentrations 
(ng/ml) in the PBS-washing buffers 

Mycotoxin Number of 
samples Mean SEM 

FB1 3 550  230 133.17 

DON 3 43.7  8.7 5.04 

 
On the other hand, the weak association between FB1 and LAB leads to 

almost a complete release of all bound FB1 into washing buffers. These findings 
are similar to those of Haskard et al. (2001) who showed that mycotoxin binding 
was a reversible process and the stability of complexes formed depend at large on 
mycotoxin structure, bacterial strain, treatment, and surrounding environmental 
conditions. 

Collectively, our results suggest that biding, rather than enzyme-mediated 
degradation, was responsible for the lowering of deoxynivalenol in treatment 
samples compared to controls. Similar observations were reported recently with 
much speculation about the actual binding site and the role of each cellular 
component in this binding (Bueno et al., 2007; Fuchs et al., 2008). In order to 
examine the involvement of bacterial cell walls in binding, we incorporated 
gram-negative E. coli cells as controls in all mycotoxin-binding trials under 
similar growth conditions and mycotoxin concentrations. No reductions in 
mycotoxin concentrations were observed when E. coli was used (data not 
shown), thus confirming the hypothesis that gram-positive cell walls are involved 
in the reported binding process. This observation aligns with the results of other 
research groups (Del Prete et al., 2007; Hernandez-Mendoza et al., 2009; 
Niderkorn et al., 2006). The actual binding sites of different mycotoxins were 
recently investigated by Niderkorn et al. (2009). In that study, factors that led to 
the degradation of peptidoglycan polymers of bacterial cell walls resulted in 
decreased binding capacities, while conditions that increased the tricarballylic 
acid (TCA) component of bacterial cell walls were responsible for higher binding 
affinities. 
 
CONCLUSION 
 

In conclusion, this isolate of Lactobacillus paracasei subsp. tolerans showed 
the ability to bind DON in liquid cultures. Products that contain the heat-
inactivated cells (such as baked products or pasteurized yoghurt) may have some 
advantages in this regard; however the practical use of such mycotoxin-binding 
strains need to be further investigated using in vivo models. 
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