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INTRODUCTION 
 
mTOR kinase (mammalian target of rapamycin) is a member of a large family of 
serine/threonine kinases. The main function of this kinase is to maintain cell 
homeostasis by controlling the transcription, translation, autophagy, proliferation 
and coordinating the catabolic and anabolic processes, by monitoring the level of 
nutrients, the level of energy and growth factors (Kapahi et al., 2010; Sengupta 
et al., 2010). The broad spectrum of mTOR kinase is possible due to the fact that 
it forms two distinct complexes with different functions: mTORC1 and mTORC2 
(Martin and Hall, 2005; Kapahi et al., 2010).  
The general elements of construction of the two complexes are mTOR, 
mLST8/GβL (mammalian lethal with Sec13 protein 8) and Deptor (DEP domain-
containing mTOR-interacting protein) (Maiese et al., 2012). Other structural 
elements are specific to the individual complexes. TORC1 complex additionally 
includes Raptor (regulatory associated protein of mTOR) and PRAS40 (praline-
rich Akt substrate 40kDa). The mTORC2 complex has additional elements like 
Rictor (rapamycin-insensitive companion of mTOR), mSIN1 (mammalian stress-
activated protein kinase interacting protein 1), and Protor-1 (praline-rich repeat 
protein-5, PRR5 ) (Sarbassov et al., 2005). 
Both complexes, mTORC1 and mTORC2 oversee multiple cellular functions 
(Maiese et al., 2013; Chong et al., 2012). mTORC1 is primarily responsible for  
the controls protein translation by regulating the activity of the eukaryotic 
initiation factor 4E-binding protein-1 (4EBP1) and the serine/threonine kinase 
ribosomal protein p70S6K (Gingras et al., 1998). The  mTORC2 controls 
cytoskeleton reorganization (Sarbassov et al., 2004) and contact between cells 
(Gulhati et al., 2011). The role of mTOR kinase is based on the control many 
aspects of cellular metabolism including amino acid biosynthesis, glucose 
homeostasis (Thomas et al., 2004) and also fat metabolism (Kim and Chen, 
2004). 
The best known inhibitor of the mTOR pathway is rapamycin which inhibits 
mainly mTORC1 functions (Polak and Hall, 2009), however chronic 
administration of high doses of rapamycin contributes also to the inhibition of the 
TORC2 (Foster and Fingar, 2010). 
The mTOR kinase has become an important target of the research in the last 
decade. Its impaired activity is more often mentioned as one of the pathological 
factor in the development of neurodegenerative diseases such as Parkinson’s or 
Alzheimer’s (Webb et al., 2003; Bandhyopadhyay et al., 2007; Perycz et al., 
2007), associated with metabolic disorders (de la Monte and Wands, 2008; 
Carvalho, 2013). 

Although numerous studies have been done on the influence of the mTOR on 
neuron functions (Costa-Mattioli et al., 2009; Cao and Obrietan, 2010), the 
effect of this pathway on the astrocytes has not been so far fully understood. 
Astrocytes activation called astrogliosis has been implicated in the pathogenesis 
of several neurological conditions, such as neurodegenerative diseases 
(Verkratsky, 2013), infection, trauma or ischemia (Lisi et al., 2012). Astrocytes 
can be a good model to study diabetes in CNS (Latacz et al., 2013a). The latest 
results confirm a deleterious role of activated astrocytes in impaired glucose and 
insulin states (Liao et al., 2011). The state of reactive astrocytes is often 
correlated with a reduced level of expression of the main cellular marker of 
astrocytes - GFAP (glial fibrillary acid protein). Studies using a streptozotocin-
induced type 1 diabetic rat revealed decreased astrocytes GFAP expression in 
main CNS structures (Coleman et al., 2004) and different data also confirmed 
that decrease in GFAP expression is associated with detrimental conditions in the 
CNS (Pekny and Pekna, 2004). It has been also confirmed that mTOR inhibitior 
– rapamycin, influences on astrocytes activity in vitro (Latacz et al., 2013b). 
Thus, the aim of the study was measure expression of GFAP mRNA and mTOR 
kinase components: Raptor and Rictor mRNA after cells exposition to the 
rapamycin in the culture medium supplemented with elevated glucose 
concentrations. 
 
MATERIAL AND METHODS 
 
The study was performed on primary cortical actrocytes from fetal Sprague-
Dawley rats (Life Technologies, Invitrogen, Poland). The first step of the 
experiment was the multiplicative growth of astrocytes. Cells were seeded at 2 x 
104cell/cm2. Cultures were successfully grown in 25cm2 flasks to 100% 
confluence in 85% Dulbecco’s Modified Eagle Medium containing 4.5g/L 
glucose and 15% fetal bovine serum (Life Technologies, Invitrogen, Poland). 
Standard physical growth conditions for rat primary cortical astrocytes (37ºC in a 
humidified atmosphere of 5% CO2 in air) were used. Medium was changed every 
4 days. The next stage of the experiment was 24 hours incubation of the cells in 
three different mediums: normoglycemic (CONTROL: 4.5g glucose.L-1) as a 
control group, high glucose (H1: 9g glucose.L-1) and very high glucose (H2: 
13.5g glucose.L-1) with supplementation of 1nM (R1) and 10nM (R2) of 
rapamycin. Glucose and rapamycin used in cell culture were provided by Sigma-
Aldrich (Poland). 
 
 
 
 

In this in vitro study the effects of rapamycin – mTOR kinase inhibitor, on the activity of kinase complexes componenents Rictor and 
Raptor, and on astrocytes activity were investigated. Astrocytes were incubated for 24 hours in various glucose conditions: 
normoglycemia (CONTROL : 4.5 g glucose.L-1), high glucose (H1: 9 g glucose.L-1 ), very high glucose (H2:13.5g glucose.L-1). Two 
concentrations of rapamycin (1nM and 10nM) were added to the culture medium. The activity of kinase complexes was evaluated by 
quantitative PCR  measurements of mRNA expressions for Raptor, Rictor and markers of astrocytes activity – GFAP. Significant 
differences have been detected between control and experimental groups. Observed data suggested that rapamycin reduced mTOR 
kinase activity in control group and increased activity of astrocytes in elevated glucose conditions in vitro. 
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RNA extraction and cDNA synthesis 
 
Cells were removed from the plates using StemPro Accutase Cell Dissociation 
Reagent (Life Technologies, Poland) and total RNA was extracted from cells 
using Total RNA Mini Kit (A&A Biotechnology, Poland). Concentration and 
purity of the RNA samples were determined by UV spectroscopy at 260/280 nm. 
The first strand cDNA was transcribed from 1µg RNA with MultiScribe Reverse 
Transcriptase (50U/µl, Applied Biosystem, USA) using random primers at 25°C 
for 10 minutes followed by 37°C for 120 minutes and 85°C for 5 seconds. The 
cDNA was reconstituted in 50µl of sterilized water and 100 ng of the cDNA 
solution was used as a template. 
 
Quantitative PCR 
 
Quantitative PCR analysis was performed using the StepOnePlus Real-Time PCR 
System (Applied Biosystems, USA) with the Universal Master Mix and TaqMan 
chemistry (Applied Biosystems, USA). The reactions were as follows: an initial 
step of 50°C for 2 minutes, and then 95°C for 10 minutes, to activate the 
AmpliTaq Gold DNA polymerase, followed by 40 cycles of 95°C for 15 seconds 
and 60°C for 1 minute. As a reference gene the 18sRNA mRNA was used 
(Applied Biosystems, USA). The GFAP, Raptor and Rictor expression were 
assessed using a designed gene expression assay (Applied Biosystems, USA). 
The method of 2-∆∆Ct with 18sRNA as an internal control and the sample from 
control group as an internal calibrator was used to present a change in gene 
expression. 
 
Statistical analysis 
 
The results were expressed as means ± standard deviations (SD). Comparisons of 
the group means were made using ANOVA followed by Tukey’s post-hoc test 
(PQStat 1.4.6 Program, Poland). Statistical significance was set at P<0.01 
 
RESULTS AND DISCUSSION 
 
The study revealed that mTOR kinase is a potent factor which can modulate the 
activity of astrocytes in normoglycemia and glycemic abnormalities like elevated 
glucose concentration. 
The obtained results (Fig.1a) indicated that in normoglycemia only concentration 
at 1nM of rapamycin decreased significantly the expression of GFAP mRNA (to 
0.31±0.04 GFAP/18sRNA, P<0.01). Lower and higher concentrations of glucose 
reduced the level of expression (H1: 0.46±0.07, H2:0.19±0.03 GFAP/18sRNA, 
P<0.01). It was also noticed (Fig.1b) that both doses of rapamycin significantly 
increased the expression of astrocytes GFAP mRNA in high glucose (H1R1: 
3.60±0.65 GFAP/18sRNA, P<0.01) and very high glucose conditions (4.60±0.82 
GFAP/18sRNA, P<0.01) compare to control.  
 

 

 
Figures 1a: Expression of GFAP mRNA in astrocytes after 24 hours incubation 
in normoglycemic (CONTROL), high glucose (H1) , very high glucose (H2) 
conditions ,and with 1nM (R1) and 10nM (R2) of rapamycin. 1b. Expression of 
GFAP mRNA in astrocytes after 24 hours incubation in normoglycemic 
(CONTROL), high glucose (H1) and very high glucose (H2) conditions in 
combination with 1nM (R1) and 10nM (R2) of rapamycin. (X±SD, values with 
different superscript letters differ significantly, P<0.01). 

 
It was showed that in group with high glucose (H1) expression of Raptor mRNA 
was not changed significantly (Fig. 2a.) but it was observed an increase in 
mRNA expression for Rictor protein (Fig.3a. 1.51±0.2 GFAP/18sRNA, P<0.01). 
In H2 group (very high glucose) Raptor expression was increased twofold (Fig. 
2a. 2.06±0.11 GFAP/18sRNA, P<0.01) while Rictor expression was significantly 
lowered (Fig.3a. 0.28±0.04 GFAP/18sRNA, P<0.01).  
The obtained results also indicate that lower dose of rapamycin (1nM) in all 
elevated glucose conditions (H1 and H2) has a stronger inhibitory effect on both 
complexes mTORC1 and mTORC2 by downregulation of its components: Raptor 
(Fig.2b. H1+R1, H+2R1) and Rictor (Fig.3b. H1+R1, H2+R2). 
 

 

 
Figures 2a: Expression of Raptor mRNA in astrocytes after 24 hours incubation 
in normoglycemic (CONTROL), high glucose (H1) , very high glucose (H2) 
conditions ,and with 1nM (R1) and 10nM (R2) of rapamycin. 2b. Expression of 
Raptor mRNA in astrocytes after 24 hours incubation in normoglycemic 
(CONTROL), high glucose (H1) and very high glucose (H2) conditions in 
combination with 1nM (R1) and 10nM (R2) of rapamycin. (X±SD, values with 
different superscript letters differ significantly, P<0.01). 
 

 

 
Figures: 3a. Expression of Rictor mRNA in astrocytes after 24 hours incubation 
in normoglycemic (CONTROL), high glucose (H1) , very high glucose (H2) 
conditions ,and with 1nM (R1) and 10nM (R2) of rapamycin. 3b. Expression of 
Rictor mRNA in astrocytes after 24 hours incubation in normoglycemic 
(CONTROL), high glucose (H1) and very high glucose (H2) conditions in 
combination with 1nM (R1) and 10nM (R2) of rapamycin. (X±SD, values with 
different superscript letters differ significantly, P<0.01). 
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The obtained results clearly showed that depending on glucose concentration 
astrocytes reveal different activity features what can be manifested as a change of 
GFAP mRNA expression. mTOR kinase inhibition by rapamycin can increase 
GFAP mRNA expression (Fig. 1a and 1b) which may have great importance for 
the maintaining proper functioning of the CNS. Previous studies have confirmed 
that decreases in GFAP expression were associated with unfavorable conditions 
in the CNS (Pekny and Pekna, 2004). Research on GFAP knock-out mice and 
decrease in astrocyte glial fibrillary acidic protein expression in type 1 diabetic 
rats (Barber et al., 2000; Coleman et al., 2004; Coleman et al., 2010) 
emphasized the role of this protein in the proper white matter vascularization, 
maitenance the blood–brain barrier (Bouchard et al., 2002, Horani and 
Mooradian, 2003) and in long-term potentiation (LTP) which is a long-lasting 
enhancement in signal transmission between two neurons (Kamal et al., 2000; 
McCall et al., 1996). Decreased activity of both mTORC1 (Fig.2.) and mTORC2 
(Fig.3.) in elevated glucose conditions appears to have a beneficial effect on the 
physiology of astrocytes by raising the GFAP mRNA expression (Fig.1.). 
The data showed a significant modulating effect of the mTOR inhibitor on the 
activity of astrocytes (Fig.1a and 1b) and the involvement of particular 
complexes - mTORC1 and mTORC2 of this pathway. This glial cells which take 
part in maintenance of the neuronal homeostasis in the central nervous system 
may be a good therapeutic target e.g. for inhibition of neurodegenerative diseases 
development related to glycemic abnormalities like hyperglycemia. Using an 
appropriate concentration of mTOR inhibitor it is possible to stimulate activity of 
astroglial cells and  support neuron functions.  
 
CONCLUSION 
 
Based on the obtained data of the expression of mTOR components mRNA and 
GFAP mRNA we can conclude that  lower dose of rapamycin at a concentration 
of 1 nM in the culture medium is much more efficient than higher dose (10nM) 
and effectively reduces the expression of mRNA for both mTOR kinase protein 
subunits: Raptor and Rictor, under conditions of elevated glucose levels. At the 
same time inhibition of mTOR pathway results in an increased activity of 
astrocytes, what is documented by elevated GFAP mRNA expression. These 
observations indicate that rapamycin effects on astrocytes function can be 
significant in prevention of the central nervous system pathology related to 
impaired glucose conditions. Future perspectives should be focused on 
verification astrocytes and mTOR kinase role in glycemic abnormalities in CNS.  
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