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INTRODUCTION 

 

Staphylococcus aureus (S. aureus) is a versatile pathogenic bacterium (Schmidt 

et al., 2010) responsible for a significant number of heal thcare-associated and 

community-acquired infections (Kurlenda and Grinholc, 2010). It causes a 

broad spectrum of infections ranging from acute to chronic disease (Van den 

Berg et al., 2011 and Francois et al., 2010) and is a common etiological agent of 

opportunistic infections. It is well known that the organism acquires resistance 
soon after the introduction of new antibiotics (Lyon and Skurray, 1987). 

Methicillin was developed in 1960 for the treatment of such multidrug resistant 

Staphylococcus aureus. However in the same year, Jevons (1961) discovered 
Methicillin Resistance S. aureus (MRSA), which by 1970s has become spread all 

over the world. There was a new interest in the possibilities of bacteriophage 

therapy, which a specific kind of viruses that attack only bacteria used to kill the 
pathogenic microorganisms (Barrow and Soothhill, 1997). Duckworth and 

Gulig, 2002 showed that phage therapy would have a role against infectious 

diseases. Although bacteriophages had not been extensively used as antimicrobial 
agents since the emergence of antibiotics, the rise of multiple antibiotic resistant 

strains had a renewed in phage therapy (Platt et al., 2003). Amenu, (2014) 

examine various aspects of bacteriophage ecology, particularly focusing on 
phages specific to the bacterial species Staphylococcus aureus, Pseudomonas 

aeruginosa, and Escherichia coli. Basdew and Laing (2014) studied sensitivity 

of six S. aureus-phage isolates towards simulated environmental.  Three of the 
six isolated phages performed optimally during the in vitro assays and have 

considerable potential for in vivo applications. Recently, some Staphylococcal 

phages have been isolated and characterized (Gu et al., 2012; Cui et al., 2012; 

Amenu, 2014; Swift and Nelson, 2014; El Haddad et al., 2014; Li and Zhang, 

2014). Our study was performed to complete the previous work (Al-Yousef, 

2013). Also, objectives of the present work were to study biological and partial 
characterize of MRSA-phage. 

 

MATERIAL AND METHODS 

 

Staphylococcus aureus and bacteriophage 

 
Methicillin-Resistant S. aureus (MRSA) strain and their specific bacteriophage 

was obtained from previous work (Al-Yousef, 2013). Methicillin resistance of S. 

aureus was determined by MRSA screening agar containing 6μg /ml oxacillin. 

Confirmation for methicillin resistance was performed by determining the 

oxacillin-MIC by the standards of antimicrobial susceptibility testing according 
to CLSI, 2013 and MicroScan® instrumentation (Siemens Healthcare Diagnosis 

Inc, USA) (Barry, 2007). Bacteriophage stocks were generated by combining 

500 μL of MRSA culture with 500 μL of each bacteriophage (1.0 x106 PFU mL-1) 
in a test tube, pouring the contents onto a tryptic soy agar plate, and incubating 

the plate overnight at 37 °C. Following incubation, the plate’s content was 
collected into a 50 mL tube by washing with tryptic soy broth (TSB), scraping 

with a sterile plastic loop, and aspirating with a pipette. The tube was then 

centrifuged for 20 minutes at 3500 rpm to pellet out the debris, and the 
supernatant was filtered through 0.2 μm Millipore membrane to remove 

extraneous debris. The final phage filtrate was quantified using a traditional 

plaque assay (Adams, 1959). 

 

Plaque purification and lysate preparation 

 

A single plaque was picked from the plate with a sterile tooth-pick, introduced 

into 3 ml of a log phase culture of the MRSA host in nutrient broth, and was 

incubated at 37ºC in an environmental shaker at 120 rpm for 12 hours. This was 
then centrifuged at 10.000g followed by filtration through 0.22 μm Millipore 

membrane. The lysate obtained was used for double agar overlay. This procedure 

was repeated 6 times, until uniform sized plaques were obtained on the plate.The 
plates with uniform sized plaques were overlaid with 10 ml of SM buffer solution 

[100 mM NaCl, 10 mM MgSO4, 50 mM Tris-HCl, pH 7.5 and 0.01% (w/v) 

gelatin] and were incubated overnight at 4°C, with gentle rocking so that phages 

could easily diffuse into the buffer. The phage suspension was recovered after 

incubation from all the plates and pooled. Chloroform was added to this pooled 

mixture to a final concentration of 5 % (v/v), mixed well using a vortex mixer 
and incubated at room temperature for 15 minutes. The cell debris was then 

removed by centrifugation at 5000 g for 10 minutes (Sigma, 3K30, Germany) and 

the supernatant was transferred to sterile polypropylene tube. Chloroform was 
added to a final concentration of 0.3 % (v/v) and this was stored at 4°C until use. 

The titer of this lysate was noted after serial dilution according to Malke, (1990). 

 

 

 

A marked increase in the infection incidence caused by methicillin-resistant Staphylococcus aureus (MRSA) strains has been noted in 

medical practice in recent years. This study was conducted to study the biological and characterize of MRSA-phage. Methicillin 

resistance of Staphylococcus aureus was detected and confirmed by determining of the MIC of oxacillin by the standard agar dilution 

method. Phage was biologically purified using single plaque technique, then phage characterization were studied using host range, 

adsorption time, particle morphology and its structural protein. MRSA phage showing lytic nature was purified by repeated plating after 

picking of single isolated plaques. This phage is active against all 11 isolates either of S. aureus or MRSA tested as hosts. Phage 

produced clear plaques indicating their lytic nature. This phage was concentrated employing polyethylene glycol (PEG)-NaCl 

precipitation method. Morphologically, MRSA Phage has a hexagonal head having a long non-contractile tail, indicating his icosahedral 

nature. Adsorption studies showed 100% adsorption of MRSA-Phage after 35 minutes of exposure. Sodium dodecyl sulfate-

polyacrylamide gel electrophoresis  (SDS-PAGE) experimentation indicated that the phage particles contain one major structural protein 

(about 30 Kda). 
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Host range determination 

 

Spot tests were used for host range studies, and, in all cases, positive tests were 

confirmed by plaque assay. Eighteen bacterial isolates, (6 MRSA; 5 S. aureus; 2 
Pseudomonas aeruginosa; 2 Klebsiella pneumonia and 3 Escherichia coli) (Table 

1) were used as indicators for the determination of phage sensitivity by an agar 

spotting method (Adams, 1959). Ten microliters from bacteriophage samples 
(109 PFU/ml) were placed on each lawn of indicator cells and left to stand for 30 

min. Plaque formation was examined for lysis after 24h incubation at 37°C. The 

results were recorded as positive (+) and negative (-). 

 

Phage adsorption 

 

The first step in the growth of bacteriophage was its attachment to susceptible 

bacteria, this process is called adsorption. Log phase culture of host was infected 
using the phage then incubated at 37°C. Aliquots of 5 ml were sampled at 0, 5, 

10, 15, 20, 25, 30, 35, 40 and 45 minutes time intervals after infection. All the 

samples drawn were immediately filtered through 0.22 μm membrane filter 
(Millipore, USA). The phage titer was determined using double agar overlay 

method after appropriate dilutions. All plating was done in triplicates and 

appropriate controls were maintained. The percentage of phage adsorption was 
calculated as follows: [(control titer -residual titer)/control titer] X 100% 

(Durmaz et al., 1992). The phage titer observed at time zero was considered as 

the control titer. 

 

Phage concentration 

 
Phage was concentrated using Polyethylene glycol (PEG) 6000 as described by 

Malke, (1990). Briefly, 1% (v/v) of an overnight culture of the host bacteria was 

transferred to 200 ml nutrient broth, and incubated at 37°C for 3 hours in an 
environmental shaker at 100 rpm. Phages were added and the incubation at 37°C 

was continued at 100 rpm for 12 hours. This broth was then centrifuged at 8000 

rpm for 20 minutes (Sigma, 3K30, Germany), the supernatant was collected and 
filtered through 0.22 μm membrane Millipore filter. Solid NaCl was added to a 

final concentration of 1 M and dissolved by stirring with a sterile glass rod. This 

mixture was kept in ice for 1 hour, followed by centrifugation at 9000 rpm for 10 

minutes at 4°C. Solid PEG 6000 was added to the supernatant at a final 

concentration of 10% (w/v), dissolved by slow stirring on a magnetic stirrer at 

room temperature. This was then kept in ice overnight, followed by 
centrifugation at 9000 rpm for 10 minutes at 4ºC. The supernatant was discarded 

completely, while the pellet was resuspended in 5 ml of phosphate buffered 

saline (PBS). PEG and cell debris were removed from the phage suspension by 
the addition of an equal volume of chloroform, vortexing for 30 seconds, 

followed by centrifugation at 2000 rpm for 15 minutes at 4ºC. The aqueous phase 

containing the phage particles were recovered and stored at -20ºC. Phage stock 
was stored with chloroform (5% by volume) at 4 ºC, and an aliquot was frozen at 

-80 ºC in MRS broth containing 15% glycerol. 

 

Morphological analysis by transmission electron microscopy (TEM) 

 

Formvar membrane-coated grids were placed on a drop of bacteriophage diluted 
with distilled water. The grids were then placed on a drop of 2% uranylacetate for 

10–20 s, lifted and dried with filter paper, then dried in air. The grids were 

examined using a Hitachi 7100 transmission electron microscope (Joil, model 
GEM 1010). 

 

Phage structural protein analysis by sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis  (SDS-PAGE) 

 

SDS-PAGE was performed for determining the size and number of the proteins 
of phage particles. Concentrated and purified sample phage (0.1-ml) was heated 

at 100°C for 5 min to ensure denaturation before loading on a gel for 

electrophoresis. Electrophoresis was carried out with a 4% stacking layer and 
12.5% separating gel according to Laemli (1970). Standard proteins were used as 

size markers. Each well was loaded with 10 μl of sample containing 
approximately 10 μg of protein. Following electrophoresis, protein bands were 

stained with Coomassie blue R-250 solution, followed by destaining with 7.5% 

glacial acetic acid and 5% methanol, and then photographed. 

 

RESULTS AND DISCUSSION 

 
A marked increase in the infection incidence caused by MRSA strains has been 

noted in medical practice in recent years. Colonization with MRSA has been 

described as a risk factor for subsequent MRSA infection (Davis et al., 2004 and 

Khairulddin et al., 2004). The prospects of lytic phages as bio-control agents 

against pathogenic bacteria are being reconsidered worldwide with the surfacing 

of multiple antibiotic resistances (Sulakvelidze et al., 2001). S. aureus is one 
among many bacterial pathogens which phages are experimented as therapeutic 

agents (Leszczyňski et al., 2006). Thus the rationale of the present study was to 

search for specific lytic phages where it was most likely to be found i.e. from the 

soil (the same environment where their host S. aureus is known to reside) (Al-

Yousef, 2013). 

 

Bacteriophages isolation 

 

MRSA was the host bacterium that helped to isolate lytic bacteriophage from the 

soil samples in previous work. The phage was obtained only via the enrichment 
protocol. MRSA Phage consistently exhibited excellent bacterial cell lysis 

capability. MRSA Phage was purified by repeated plating and picking of single 

isolated plaques from the lawns of MRSA plates, and produced clear and round 
plaques with well-defined edges indicating their lytic nature (Figure 1).  

 

 
Figure 1 Plate showing plaques formed by Staphylococcus aureus-phage on 

bacterial lawn of MRSA 

 

Host range 

 
The host range of MRSA phage was determined with 18 selected isolates from 4 

genera. MRSA phage was lytic against both MRSA and S. aureus. The other 

bacterial isolates were not sensitive to phage (Table 1). Host range within the 
genus is considered to be a desirable quality of phage as a bio-control agent. 

                             

Table 1 Host range of MRSA-phage 

Bacterial isolates Lysis(a) 

Methicillin Resistance S. aureus (MRSA) 

Methicillin Resistance S. aureus (MRSA) 
Methicillin Resistance S. aureus (MRSA) 

Methicillin Resistance S. aureus (MRSA) 

Methicillin Resistance S. aureus (MRSA) 
Methicillin Resistance S. aureus (MRSA) 

S. aureus 

S. aureus 
S. aureus 

S. aureus 

S. aureus 
Pseudomonas aeruginosa 

Pseudomonas aeruginosa 
Klebsiella pneumonia 

Klebsiella pneumonia 

Escherichia coli 
Escherichia coli 

Escherichia coli 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 
+ 

+ 

+ 
- 

- 
- 

- 

- 
- 

- 
  a + = Plaques formed; - = no plaque formed 
                                     

Concentration of MRSA Phage 

 
As concentration and purification of virus particles are prerequisites for structural 

and functional characterization of phages (Boulanger, 2009), MRSA phage was 

purified and concentrated. Concentration was done employing PEG-NaCl 
precipitation method was as described by Malke, (1990). The efficiency of this 

method is almost independent of phage concentration and is therefore useful in 

order to concentrate even phage lysates with very low titer (Yamamoto et al., 

1970). MRSA phage was concentrated up to 1 x 1010 PFU/ml using PEG 

precipitation and these phage concentrates prepared in large quantities were used 

for all further studies. 

 

Characterization of isolated MRSA-phage 

 

Morphological analysis by TEM 

 

The TEM was employed to aid in this morphological analysis. The morphtypes 
exhibited by MRSA-phage have been previously reported in association with 

genus Staphylococcus. There are prior reports on Staphylococcus phages 

belonging to families Podoviridae and Siphoviridae (Aswani et al., 2011).  The 
TEM image of our MRSA phage isolate revealed identical bacteriophage with a 
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hexagonal head (64 ± 2nm) having a long non-contractile tail (132 ± 2nm), which 
are typical morphological features of family Myoviridae (Figure 2).  

 

 
Figure 2 Transmission electron micrograph image of phage stained with 2% 

uranyl acetate MRSA phage. 

 

Phage adsorption 

 

Phage adsorption on to the susceptible host is the second significant factor 

affecting the successful phage-host interaction. Adsorption is described as the 

first step of phage infection and may be defined as the attachment of phage 
particles to bacterial surfaces so that phage and bacteria can sediment together 

(Adams, 1959). The phage extracellular search is a time of free diffusion that 

delays the onset of virus attachment (Shao and Wang, 2008). Careful 
determination of the time taken by the phages to adsorb onto to the host cell is of 

paramount importance, as it may serve in later experiments for accurate 

characterization of the phage. The adsorption curve of MRSA-phage is shown in 
Figure 3. MRSA phage adsorption achieved 100% after 35 minutes of exposure 

to the host bacteria. 

 

 
Figure 3 Adsorption curves of MRSA phage. 

 

Phage protein 
 

The structural protein composition of Staphylococcus phage was analyzed by 

SDS-PAGE. One major structural protein was detected during the analysis of the 
phage. Protein profiling can be used as a molecular signature tag of a phage, 

helping in identifying as well as differentiating it from other phages, as phages 

even within the same family tend to have different structural proteins owing to 
differences in phage specificity (Shivu et al., 2007) as evidenced by the lack of 

comparable protein profile among phages belonging to Podoviridae family. The 

structural protein of MRSA-phage was analyzed by SDS-PAGE (Figure 4). It 
showed that the virions contained one major protein with a molecular weight 

about of 30 kDa.  

 

 
Figure 4 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of MRSA 

phage structural protein. Lanes: M, standard proteins; 1, phage protein, stained 

with Coomassie blue. The size of the phage proteins is expressed in kDa. 

CONCLUSION 

 

In this study, virulent phage with lytic activity against MRSA  strain was 

isolated. Morphologically, the phage is member of the family Myoviridae, and 
exhibited an identical host range. Adsorption studies showed 100% adsorption of 

MRSA-Phage after 35 minutes of exposure. SDS-PAGE indicated that the phage 

particles contain one major structural protein (about 30 Kda). Our results 
indicated good efficacy for this phage, which consistent with data cited by 

Kaźmierczak et al., 2014. They studied the phages which able to kill S. aureus 

in the treatment of various human diseases, e.g., venous leg ulcers and eye 
infections, septicemia, staphylococcal lung infections, and others. Because there 

are not enough chemotherapeutics to destroy bacteria and to counteract the 
problem of infections in the human population, however the field of phage 

therapy as antibacterial agents has advanced considerably as an alternative to 

antibiotics (Kwiatek et al., 2012; Chhibber et al., 2008; Kim et al., 2007 and 

Westwater et al., 2003). Finally, phage treatment may help to reduce the 

frequency of potentially lethal infections in the hospital environment, with related 

costs that can be significantly lower than those of antibiotics. 
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