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INTRODUCTION 

 

The realm of microbes; the deeper we dive, the farther and wider the bottom is, it 
appears. Microbiology has been contributing significantly towards understanding 

biology in general, and prodigious revelations have been made in biology at 

molecular level. Many of the discoveries made through microorganisms have 
been the center stage in the development of many genetic-engineering 

technologies (Zimmer, 2009). Although, it may appear that biological science 

today has reached the summit, research reports continue to confound our ideas of 
microbial life and here we discuss the sociobiology of microbes in particular, the 

least dealt and the most baffling of all and why transcriptomics is of relevance in 

this context. 
 

Sociobiology of microbes, does that matter ? 

 
For more than a century, ever since the advent of the science of microbiology, 

microbiologists have been engaged in understanding microbes as pure cultures. 

In fact, the very basis of classical microbiological methods rests on efficient pure 
culture techniques. In the pursuit of understanding pure cultures, it was long 

forgotten that microbes indeed lead a social life and that they seldom exist as 

pure cultures in natural environment.  However, reports in the past decade have 
given us to believe that the purview of sociobiology of microbes does matter, and 

it is of relevance.  

 
Like most species, almost everything that a microbe does, has social implications. 

Even the very basic aspect of life, such as reproduction, could deprive a neighbor 

of its resources and therefore bring about a conflict (MacLean, 2006). Besides, 
microbes also secrete in abundance, metabolites, toxins (Pettit, 2009), and even 

extracellular DNA (Johnson et al. 2013), all of which can have an affect on their 

social neighbours. In this regard, it is of relevance and a necessity to rekindle a 
view point of ecology, which states that ‘the behavior of most organisms living in 

close proximity will be governed by competition or cooperation’ (Alexander, 

1974). It is understandable that in such social communities, microbes are bound 
to tradeoff with other community denizens ( Crespi, 2001; Schink, 2002; 

Velicer, 2003; Mitri et al. 2011).  Considering this to be an ecological gospel, it 
should be agreed upon that such social conditions, not only influence the 

logarithmic growth but also provide ample opportunities for metabolic 

interactions within the community.  The interactions can and has been radically 
altering the biochemical phenotypes and or the morphological characteristics of 

the participating strains, also leading to social evolution (Foster, 2005; Boyle et 

al. 2013). This very logical understanding makes it agreeable that the behavioral 
pattern of a socially living microbe, which is the naturally occurring state of most 

microbes, is bound to be divergent to the lab grown pure cultures. And it is also 

understandable that behavioral pattern, be it with respect to metabolism, 
secretions, the multiplication rate, and the fundamental process of gene 

expression that governs all of it, is likely to vary. Thus the reasons to discuss 

transcriptomics with relevance to social psyche are well substantiated and require 
thorough review and investigation. 

 
Gene Expression with Relevance to Microbial Social Interactions 

 

Discussions on sociobiology of microbes have gained importance in the recent 

past. Research findings and discussions in this stream have overlapping 
implications with varied interest, from evolution, ecology to systems science. 

Reports on varied forms and levels of social interactions have come to light. 

However, the most intriguing and with immediate interests, in relation to gene 
expression studies in sociobiology are on Quorum Sensing and Co-existence, 

Metabolic Synergism in microbial communities and Sociobiology with relevance 

to pathogenicity and virulence. In order to demonstrate the magnitude of the 
necessity for gene expression studies in sociobiology, we review and discuss 

these aspects in brief. 

 
Metabolic Synergism in Microbial communities 

 

Regardless of the locale, a microbial niche is a package of multiple species and 
strains, wherein interactions govern co-existence and cells compete, co-operate, 

conflict and if need be, coerce and cheat. This influences the fundamental aspects 

of microbial progression in a mixed culture community.  When in mixed culture, 
the affiliating strains compete for common resource. The competition may arise 

not only between different species, but also between strains of the same species. 

The competition naturally mediates a situation of either co-operation or conflict 
and depending on the nature and properties of the competing species, the 

relationship is defined. In such state of competition where in, the competing 

affiliates share common resources, conflict is evident (Rainey and Rainey, 

2003). The sharing becomes easier and clear with resources such as carbon and 

oxygen (Kreft, 2004; Wintermute and Silver, 2010a). These resources due to 

its potential role in growth, when shared, obviously lead to conflict. (Ratnieks et 

al. 2006). For instance, in mixed culture, under conditions of oxygen crunch, 

microbes have the ability to shunt from aerobic respiration to fermentation. 

(Pfeiffer et al. 2001; Frick and Schuster, 2003; Pfeiffer and Bonhoeffer, 

2004; Pfeiffer and Schuster, 2005; Novak et al. 2006). While respiration, 

owing to efficient resource management, is thought to be a cooperative strategy, 

fermentation on the other hand in contrast, is observed as a competitive strategy 
(Pfeiffer et al. 2001). The phenomenon of shift in the metabolic pathways by 

microbes in mixed culture therefore, has also brought to focus, the psyche of the 

competing and co-operating microbes in mixed cultures.  

Sociobiology of microbes is an emerging branch of science that has delivered interesting and intriguing research findings over the last 

few years. The revelations are such that the research perspective of microbes is gradually drifting from pure culture analysis to 

community analysis. We review to substantiate the need for microbial socio-bio studies and codicil the decade long research pursuit and 

their findings using advanced technologies of Microarrays and Next Generation Sequencing, prompting for more lunge in transcriptomic 

and metatranscriptomic studies. 
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Further, from earlier mixed culture studies (Christensenet al. 2002; Hansen et 

al. 2007; Hibbing et al. 2009) it has been possible to extrapolate that metabolic 

commensalism exists between species in mixed microbial communities and that 

the cultures in mixed community, exhibit natural metabolic synergism and they 

interact (Pelz et al. 1999; Bull and Harcombe, 2009; Wintermute and Silver 

2010b). These interacting partners share metabolites, such as hydrogen 

(Hillesland and Stahl 2010), acetate (Rozen et al. 2009), amino acids (Shou et 

al. 2007), fixed nitrogen (Kim et al. 2008) or glucose (Kim et al. 2008; Gore et 

al. 2009). These sharing features within a community, undoubtedly involves 

complex molecular mechanism, which at present is an arena, unexplored.  
 

Quorum Sensing and Co-existence 
 

Quorum sensing is machinery for cell-to-cell communication that is exhibited by 

group living microbes. Through cell-to-cell communication, each cell has the 
ability to sense the density of neighbours in a community and quorum sensing 

therefore has a pivotal role in colonization (Miller and Bassler, 2001; 

Rutherford and Bassler, 2012) and biofilm formation (Parsek and Greenberg, 

2005; Moons et al. 2006; Waters et al. 2008; O’Loughlin et al. 2013). Besides 

communication, quorum sensing is also known to control diversified biological 

functions such as spore formation (LaRossa et al. 1983; Magnuson et al. 1994; 

Solomon et al. 1995; Solomon et al. 1996; Steiner et al. 2012), cell 

differentiation (Hornby et al. 2001;Hogan et al. 2004), uptake and exchange of 

genetic material (Duffin and Seifert, 2010; Antonova and Hammer, 2011; 

Suckow et al. 2011; Seitz and Bolkesch, 2013) and toxin production (Schelin et 

al. 2011; Thoendel et al. 2011). In a population of Staphyloccus aureus, for 

instance, secretion of exogenous toxin occurs only in a state of high population 
density which is regulated by the Agr signal transduction system, a quorum 

sensing system (Thoendel et al. 2011).  

Microbial colony or a community, as discussed, may comprise of multiple 
species, and this prompts us to extrapolate that quorum sensing also mediates 

communication between divergent species. Autoinducer-2 (AI-2), a quorum 

sensing molecule, produced by diverse set of species that has been inferred to 
have widespread interspecies communication (Federle and Bassler, 2003) is a 

convincing evidence for this inference. It has also been reported that quorum 

sensing in a mixed population could also affect the synthesis and secretion of 
specific proteins of divergent species (Egland et al. 2004; Xavier and Bassler, 

2005; Keller and Surette, 2006; Sandoz et al. 2007).  

Quorum sensing with such diverse role, is regulated by gene expression. 
Although different quorum sensing systems have been identified and studied, the 

network of regulatory mechanisms that aids in intra and interspecies interactions 

remain to be investigated and the expression pattern of these communicating 
molecules unearthed.  

 

Microbial Sociobiology with reference to Pathogenicity and Virulence 
 

Pathogenicity and Virulence, the qualities that describe the ability of infectious 

agents, owing to the magnitude of their role in infection; have been the major 
target science of study on pathogenic microbes. These qualities of microbes are 

governed by the expression of specific genes, which in turn is regulated. 

Although the mechanism of virulence and pathogenicity is well reported and 
compiled, till recently, it was only in the pure culture state that most pathogens 

had been studied. In the cases of infections, it is not the infectious agent alone 

that makes an entry into a host, infectious agent is but one among the plethora of 
the host intruders. In most cases of microbial intrusion, depending on the source 

of infection, a consortium of microbes gain entry into the host and the potent of 

them all establishes as the predominant infectious agent. In fact in some cases it 
is due to the entry as consortia that pathogenicity is initiated (Chao et al. 2000; 

Brown et al. 2002; Brockhurst et al. 2003; Schjorring and Koela, 2003; 

Thomas et al. 2003; Choisy and Roode, 2010; Ben-Ami et al. 2011). For 
instance, pathogenicity is expressed by Clostridium tetani only when the co-

inhabiting microbial consortia members cause an anoxygenic state leading to 

necrosis at the site of infection. And it is this condition of necrosis that triggers 
the release of the exotoxins by C.tetani (Campbell et al. 2009). As early as the 

1980’s researchers had already reported that it is only in a group that the state of 
bacteremia thrives to cause the characteristic clinical symptoms. Vught et al 

(1986) reported that Bacteriodes fragilis and B.vulgatus both are required for 

abscess formation by Escherichia coli in mice. Similarly, co-infection of 
honeybees jointly by Ascosphaera apis and A.atra increased the mortaility rate of 

the bees (Vojvodic et al. 2012). These evidences indicate that co-infections by 

multiple species may increase the degree of illness and its effects and therefore 
the need for understanding the pathogenicity of a microbe in mixed population is 

significant. On the other hand the suppressing effect on virulence and 

pathogenicity of an infectious agent in a mixed population have also been 
reported. For instance, the effect of Lactic Acid Bacilli (LAB) in a mixed 

population with Staphylococcus aureus has been rigorously studied, giving rise to 

the findings that LAB, Lactococcus lactis namely, impairs the expression of 
virulence by S.aureus in mixed culture (Alomar et al. 2008; Charlier et al. 

2008; Charlier et al. 2009; Even et al. 2009). Likewise it has also been reported 

that the virulence of Listeria monocytogenes via the expression of the prfA, a 

virulence regulator gene, is lowered in the presence of Bacillus subtilis 
(Tirumalai and Prakash, 2012a). These study have also involved the use 

microarray technology to investigate the transcriptomic response of apathogenic 

strainto the presence of a competing strain (Even et al. 2009; Tirumalai and 

Prakash, 2012b). Researchers are now compelled to admit that the expressions, 

genotypic and therefore phenotypic, of a microbial species are different in a 

social community. And this difference depending on the relatedness of different 
species in a niche can even alter the expression of Virulence and Antibiotic 

Resistance (Foster, 2005). Microarray and other high throughput technologies 

for studies on transcriptomic behavioural pattern in a social community have 
been put to use though, given the magnitude of the implications of gene 

expression and its regulations in social life of microbes, their applications seems 
very meager. 

 

Transcriptomics and Microbial Community Analysis 

 

Application of High Throughput Technology  

 
The ultimate object of microbial ecology is to elucidate the governing factors that 

facilitate a microbial community to exist, in the form they do, and this could be 

achieved by examining the interactions within the community. The enormous 
microbial biocomplexity with a multitude of highly complex interactions between 

different micro-organisms can be understood only using molecular methods. 

Understanding gene expression in a mixed community therefore came to be an 
object in sociobiology (Allen and Banfield, 2005). Although various gene 

probes made it possible for studies on species-specific genes in microbial mixed 

communities, microarray technology radically revolutionized the ability to 
simultaneously study hundreds or thousands of genes at a time (Schena et al. 

1995). Majority of prokaryotic microarray studies, however, have been used to 

study the genome or transcriptome of a single organism and therefore for a brief 
period, was limited from application in understanding the complex microbial 

ecosystems (Dennis et al. 2003).  However, owing to the enormity of the 

implications of gene expression studies in microbial ecology, several types of 
microarrays were developed and successfully applied to microbial ecology 

research. Phylogenetic Oligonucleotide arrays (POAs), Functional Gene Arrays 

(FGAs), Community Genome Arrays (CGAs), Metagenomic Arrays (MGA) and 
Whole Genome Open Reading Frame Arrays (WGA) are to name a few, each of 

which have been reviewed earlier, in context to microbial ecology research 

(Zhou, 2003;Gentry et al. 2006).  
Studies involving microarray technology in microbial community analysis have 

given interesting revelations about gene expression patterns of strains in mixed 

cultures that are divergent to its pure culture state. Transcriptomics using DNA 
Microarrays proved to be effective in studies, such as the expression of 2,4-

dichlorophenoxyacetic acid catabolic genes and the regulation of resin acid 

degradative genes by Ralstonia eutropha both in mixed microbial communities of 

industrial effluents (Dennis et al. 2003.). Expression pattern of the whole 

transcriptome of Listeria monocytogenes in mixed culture broth and biofilm both 

in the presence of Bacillus subtilis has been elucidated using microarrays (data 
accessible at NCBI GEO database (Edgar et al.2002), accession GSE27936) and 

the differential expressions of virulence and antibiotic resistance genes in mixed 

culture have been reported (Tirumalai and Prakash, 2012a; Tirumalai and 

Prakash, 2012b). All such research explorations also drive our interests to 

Metagenomics. High-throughput microarray technology has been used for studies 

of complex microbial communities in various environments and for studies on 
the diversity functions of genes and gene expressions (Zhou, 2003; Bodrossy 

and Sessitsch, 2004). Besides microarray based biochips have been developed 

specifically for screening biogeochemical cycles in the name of ‘GeoChips’ (He 

et al. 2007; Wang et al. 2009; Van Nostrand et al. 2009) and the ‘HITchip’ 

(Stojanović et al. 2009) ‘HuGChip’ (Tottey et al. 2013) for determining the 

microbial diversity of human gut. Although there have also been studies using 
microarrays for understanding metagenomics, with reference to identification of 

novel genes or proteins (Streit and Schmitz, 2004; Deutschbauer et al. 2006) 

and identification of uncultivable microbes in microbial niches (Wu et al. 2001; 

Sebat et al. 2003; Tottey et al. 2013), considering the countless natural 

microbial niches and the inter and intra-species community interactions that 
happen, the research focus and reports on metatranscriptomics is negligible.  

Microarrays with a decade long history of applications in microbial ecology is 

gradually being superseded by the Next Generation Sequencing (NGS) 
technology (Ledford, 2008). As compared to microarrays, NGS is more efficient 

in parallel sequencing of large numbers of DNA fragments, besides being rapid 

and cost effective (Roh et al. 2010).  Among the different NGS platforms, the 
pyrosequencing approach is most suited for microbial ecology studies and has 

been widely used for the purpose (Angly et al. 2006; Brown et al. 2009). NGS 

pyrosequencing approach holds a better stand to microarrays, for applications in 
microbial ecology mainly because it reduces issues pertaining to specificity 

inherent to microarrays in microbial ecological studies (Roh et al. 2010). 
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DISCUSSION 
 

Codicil 

 

Sociobiology of microbes has traversed quite a few miles in the last decade and 

has gathered moss and the prejudiced, misguided opinion that single-celled 

organisms are asocial, seems to have lost ground. The plethora of reports on 
microbial interactions, within mixed cultures in particular, brings an intriguing 

new standpoint. Can we hope to understand gene expression that underlie the 

complex network of social behavior ? Given this discernment we could anticipate 
that the expression of gene transcripts in socially living states of microbes is 

likely to be variable to their well-studied pure culture equivalents. Researchers 
believe that understanding the social sophistication in microbes can also open 

new vistas to evolutionary paths and ecological diversities (Székely et al. 2010).   

Gene expression studies or transcriptomics therefore, could yield perplexing data 
on the behavioral pattern concerning various aspects of social existence, from 

growth rate to competition, co-operation or metabolic interaction between group 

living strains. Further, analysis of gene expression patterns within a microbial 
community will allow us to tease out the impact of various biotic and abiotic 

factors that significantly impact the regulation of metabolic functions. A 

complete understanding of microbial metabolism is therefore warranted. And this 
would extend from the properties of individual strains in pure culture to the 

combinatorial interactions supported by complex communities. 

Although the viewpoint of sociobiology from where it stands today, appears to 

have far-fetching horizon with bewildering complexity, the advancements in the 
field of transcriptomics, can be envisaged to minuscule the lofty objects of 

microbial sociobiology in the years to come. 
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