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INTRODUCTION 

 

Pseudomonas aeruginosa is a common environmental microorganism and can be 
found in faeces, soil, water and sewage. It can multiply in water environments. P. 

aeruginosa is a recognized cause of hospital-acquired infections with potentially 
serious complications (Hardalo and Edberg, 1997). P. aeruginosa can cause a 

wide range of infections, and is a leading cause of illness in 

immunocompromised individuals. It predominanly colonizes damaged sites such 
as burn and surgical wounds, the respiratory track of human with underlying 

disease and physically damaged eyes (Mena and Gerba, 2009). Multidrug-

resistant Gram-negative bacteria represent important nosocomial pathogens and 
are responsible for a significant proportion of infections in patiens in hospital 

(Daugherty et al., 2014). The Gram-negative bacterium P. aeruginosa, which 

can infect a wide range of animal and plant hosts, has become resistant to 
practically all antimicrobial drugs available on the market (Breidenstein et al., 

2011).  Ciprofloxacin has emerged as one of the most effective quinolones 

against P. aeruginosa. The mechanisms of quinolone resistance described in P. 
aeruginosa are mutations in the DNA gyrase gyrA and gyrB genes (Sugino et al., 

1980) and in the topoisomerase IV parC and parE genes (Peng and Marians, 

1993), decreased permeability of the cell wall, and multidrug efflux systemes 
(Mauneimne et al., 1999). Resistance to fluoroquinolones in P. aeruginosa has 

mostly been attributed to mutations in these genes.  

Commonly, sequencing is a common technique for the identification of mutations 
in the fluoroquinole-resistance determining regions of gyrA and parC. Although 

the widespread use of this method, it is slow and expensive. Various alternative 

methods to replace sequencing have been proposed, including single-stranded 
conformation polymorphisim (SSCP) and polymerase chain reaction- restriction 

fragment length polymorphism (PRC-RFLP) (Kim et al., 2012).  

The aim of this study was to evalute a rapid method for detection of gyrA and 
parC mutations associated with ciprofloxacin resistance in P. aeruginosa strains 

isolated from soil samples. 

 

 

MATERIAL AND METHODS 

 

Collection of the soil samples and isolation of P. aeruginosa strains 

 

17 soil samples (from Sinop province, Turkey) were collected from different 
sampling sites. The samples were collected at depth of 5-10 cm below the soil 

surface. The samples were transported in cooling bags until processing at the 

laboratory. One gram of each soil sample was homogenized in 9 ml of 0.85% 
NaCl in sterile test tubes. A 0.1 ml aliquot of the dilution was spread aseptically 

on King’s B agar (KBA- Merck) medium and incubated at 30oC for 48 hours. 

After incubation, representative colonies were selected on the basis of distinct 
morphological characterictics (Atlas, 1995). The selected bacteria were identified 

by their morphological, physiological and biochemical characteristics according 

to Bergey’s Manual of Determinative Bacteriology (Brenner et al., 2005).   
 

Antibiogram 

 

Antimicrobial susceptibility testing of ciprofloxacin (CIP- 5 μg- OXOID, UK) 

antibiotic was carried out through Kirby-Bauer disk diffusion method on 

Mueller-Hinton medium according to Clinical and Laboratory Standarts Institute 
(CLSI) recommendation. MHA plates were inoculated with a bacterial 

suspension equivalent to a 0.5 McFarland standard and antibiotic susceptibility 

disks were applied. Zones of growth inhibition (in millimeters) were recorded 
after 24 h incubation at 37oC. 

 

Genomic DNA isolation 

 

Chromosomal DNA extraction from P. aeruginosa strains was carried out 

according to the method of Sambrook et al. (1989) with some modifications. 
The P. aeruginosa samples were activated with incubation at 37oC for 24 h. 

Recovered bacteria were centrifuged at 3.000 xg for 5 min and cell pellets were 

resuspended in 500 µl TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA). Pellets 
were then incubated at 55oC for 30 min following the addition of 50 µl SDS 
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(10%) and 25 µl proteinase K (20 mg/ml). Total DNA was recovered by 
sequential extractions with 575 µl phenol/chloroform (1:1). Then, tubes were 

inverted, incubated on ice for a few minutes and centrifuged at 14.000 xg for 10 

min. Upper layer (500 µl volume) was transferred into a new eppendorf tube and 

treated with 50 µl sodium acetate (3 M, pH:5.2) and 330 µl isopropanol (100%) 

(Overnight). Tubes were inverted and DNA was precipitated by centrifugation at 

14.000 xg for 10 min followed by washing with 70% (v/v) ethanol, dried, and 
resuspended in 100 µl TE buffer containing 2 µl RNase. Then, DNA samples 

were stored at -20oC until further molecular analysis. 

 

PCR amplification  

 
Nucleotide sequence from Gen Bank, P. aeruginosa accession numbers L29417 

(gyrA) and AB003428 (parC) were used for amplification (Lee et al., 2005). The 

target regions were amplified by PCR using specific primers described in Table 
1. PCR was carried out in a reaction volume of 50 µl containing 1X PCR buffer, 

1.5 mM MgCl2, 200 µM each deoxynucleotide triphosphates (dNTPs), 50 pmol 

of each primer, 2.5 U of Taq DNA polymerase (Thermo Scientific, USA) and 1 
µl genomic DNA. The reactions were performed in a Techne TC-5000 thermal 

cycler (California, USA) for 35 cycles, each consisting of a denaturation for 1 

min 94oC, annealing for 1 min at 65oC  (gyrA) or 55oC (parC), and extension for 
1 min at 72oC. PCR products were analyzed by 1.8% agarose gel (Sigma-Aldrich, 

St. Louis, MO, USA) electrophoresis with a molecular size marker (O' Gene 

Ruler, 1 kb DNA Ladder, ready-to-use, Thermo Scientific, USA). The gels were 

stained with ethidium bromide and bands were visualized under UV light. 

 

Table 1 Primer sequences for detection of the ciprofloxacin-resistant region in 
gyrA and parC genes 

Gene Nucleotide sequence (5’ to 3’) 
Nucleotide 

position 

gyrA 
GACGGCCTGAAGCCGGTGCAC 
GCCCACGGCGATACCGCTGGA 

115-135 
531-511 

parC 
CGAGCAGGCCTATCTGAACTAT 

GAAGGACTTGGGATCGTCCGGA 

63-84 

366-344 

 

PCR-RFLP for mutation detection in the gyrA and parC genes 

 

PCR products of gyrA and parC genes were digested with Cfr42I (SacII) and 

HinfI to screen for mutations at positions 83 in the gyrA and 87 and 109 in the 

parC, respectively. Enzymes digestion was performed in a 31 µl mixture 
containing 10 µl of the PCR product, 1 µl (10U) of enzyme, 2 µl buffer and 18 µl 

of nuclease free water at 37oC for 15 h. After digestion with enzymes, the 

presence of PCR products were analyzed by 2.5% agarose gel and visualized 
under UV light.  

 

SSCP for mutation detection in the gyrA and parC genes 

 

Two µl of PCR products were added to 10 µl of denaturation solution (95% 

formamide, 0.05% bromophenol blue, 0.05% xylene cyanol and 10 mM NaOH). 
Mixture was heated at 95oC for 5 minutes and immediately cooled on ice. The 

mixture was analyzed by non-denaturing polyacrylamide gel-electrophoresis 

(39:1 acrylamide:bisacrylamide) (16x18 cm) in 0.5X TBE in a Hoefer 
electrophoresis system (Hoefer Inc. Holliston, MA, USA) at constant power of 5 

mA, 18oC for 27 h (Hongyo et al., 1993). The gels were silver stained according 

to the procedure of Byun et al. (2009) and dried at room temperature. 
 

Statistical analysis  

 

The molecular weight of each band was calculated with Total Lab 1D Manual 

R11.1, UK programme. Following installation of the gel images into the 

programme, the bands were determined with their pixel positions and their 
molecular weights were scored according to the molecular size marker. The 

correlation between antibiotic resistance and ciprofloxacin was analysed by 

Pearson correlation test. Analysis was performed using the PASW statistics 18 
(IBM SPSS Inc., Chicago, IL, ABD) program. 

 

RESULTS AND DISCUSSION 

 

In the study, the 21 P. aeruginosa strains were isolated from soil samples 

collected from Sinop, Turkey. All isolates were screened on account of the 
morphological and phenotypic characteristics, and according to biochemical tests, 

the isolates were members of P. aeruginosa species. Our results indicated that the 

strains were Gram-negative, rod shaped and positive for motility, catalase, 
oxidase, urea, pyocyanin fluorescence, glucose, xylose and capable of growth in 

42oC. However, they were negative for lactose, maltose, esculin, DNase, indole, 
H2S and capable of growth in 46oC and 8.5% NaCl. 

The results of disc diffusion test showed that the 9 (42.8%) out of 21 isolates 

were resistant to ciprofloxacin with an average diameter of inhibition zone <15 
mm (Table 2). According to Ali et al. (2010), 29 (38.6%) out of 75 P. aeruginosa 

isolates were resistant to ciprofloxacin. Henwood et al. (2001) reported that 177 

(8%) out of 2194 P. aeruginosa strains were resistant to ciprofloxacin. Similarly, 
Biswal et al. (2014) reported that 7 (12%) out of 58 P. aeruginosa isolated from 

inpatients and environmental sources were resistant to ciprofloxacin. Our 

findings are in agreement with these data. The resistance to flouroquinolones is 
chromosomal. Thus, increasing intraspecies resistance to flouroquinolones is a 

reflection of mutation, which is a result of selective pressure created by the use of 

flouroquinolones, such as ciprofloxacin, norfloxacin and ofloxacin (Sheng et al., 

2002). 

The 22 (including control strain) isolates were analyzed for alterations in the 

ciprofloxacin resistance determining region of gyrA and parC by RFLP and non-
radioactive SSCP methods. PCR amplification of gyrA and parC was successful 

for all 22 strains and generated products with the expected sizes of 417 and 304 

bp, respectively. 
A single mutation in the gyrA and parC was associated with a decrease in 

susceptibility of the P. aeruginosa isolates to ciprofloxacin. A single mutation at 

codon 83 and 87 is the most frequent single mutation site in gyrA and parC gene, 
respectively.  

 

Table 2 Ciprofloxacin resistance of P. aeruginosa environmental isolates and 
mutations in gyrA and parC genes 

Strains gyrA parC CIP 

1 - - S 

2 - - R 
3 - - S 

4 - - R 

5 - - S 
6 - - S 

7 M M R 

8 - M R 
9 - - S 

10 M - R 

11 - - S 
12 - - I 

13 - - S 

14 - M R 
15 - - S 

16 - - S 

17 M M R 
18 M M R 

19 - - S 

20 - - R 
21 - - S 

P - - I 

(M): Mutant, (-): No mutant, CIP: Ciprofloxacin, R: Resistant, S: Susceptibility, 
I: Intermediate; P: P. aeruginosa ATCC 27853 
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Figure 1 RFLP analyses of selected isolates. parC – RFLP. 7, 8, 14, 17 and 18: Mutant strains, the others not mutant; gyrA – RFLP. 7, 10, 17 
and 18: Mutant strains, the others not mutant; M: Marker 

 

After digestion by SacII restriction enzyme, the gyrA PCR products amplified 

from wild type strains generated two fragment of 280 and 137 bp; whereas, the 

mutant strains remained 417 bp. Mutation at position 83 in gyrA was observed in 

4 (18.1%) isolates (Figure 1 and Table 2). Similarly, it was observed that the 
parC non-mutant strains formed two bands of 176 and 128 bp after cutting with 

HinfI, while mutant strains were expected to form a band of 304 bp, but a mutant 

strain was found to have two bands of 194 and 110 bp (Figure 1 and Table 2). Of 
the 5 strains with mutations in the parC gene, all of them had a change at the 87th 

codon, and four of them remained as 304 bp. Hovewer, only one was digested in 
the 109th codon by HinfI restriction enzyme (Figure 1). Three strains which had 

resistant to ciprofloxacin, had no mutations in either the gyrA and parC gene. In 

addition, one and two strains had mutations in the gyrA and parC, respectively, 
and 3 strains had mutations in both the gyrA and parC genes (Table 2). Morever, 

we could find no close corelation between antibiotic resistance and mutation in 

gyrA gene (P=0.56) and parC gene (P=0.65). 
In previous studies, sequencing confirmed the presence of mutations in the 

quinolone resistance determining-regions (QRDRs) in most of the clinical and 

environmental P. aeruginosa isolates. In accordance with several previous 
studies (Mauneimne et al., 1999; Deguchi et al., 2000; Lee et al., 2005; 

Gorgani et al., 2009; Bruchmann et al., 2013), the most frequenly observed 

mutations, positions 83 and 87, were encoded in QRDR of gyrA and parC, 
respectively. The RFLP method of the PCR products digested with SacII and 

HinfI has been used successfully to screen for mutations in the gyrA and parC 

gene of P. aeruginosa, respectively (Takenouchi et al., 1999; Deguchi et al., 

2000). 

The mutations in codon 83 (for gyrA) and 87 (for parC) were recognized in our 

study in only 4 and 5 of ciprofloxacin resistant P. aeruginosa isolates, 
respectively and SSCP analysis was not suitable to detect these mutations too. 

However, each band pattern detected by SSCP method indicates a different 

mutation.  
In present study, the PCR products were analysed by non-radioactive SSCP to 

identify different alleles of gyrA and parC. Several distinct SSCP patterns were 

determined, which were shown in Figure 2. The 7 isolates for gyrA and 14 
isolates for parC PCR products were electrophoresed for SSCP. Twenty-one for 

parC and fifteen for gyrA different band patterns were detected, and each pattern 

corresponded to a distinct mutation. It was also found that 2 strains (17 and 18) 
with mutation in the parC gene gave the same patterns. Morever, the strain 14 

which had a different the RFLP pattern in the parC gene gave different dominant 

band patterns from the other strains. 
 

 
Figure 2 SSCP analyses of selected isolates. M: Marker; P: P. aeruginosa ATCC 

27853 

 

CONCLUSION 

 

Our data suggest the PCR-RFLP and SSCP analyses provide simple, rapid and 
inexpensive detections of significant ciprofloxacin resistance mutations. Also, 

SSCP analysis can be advantageous for the detection of novel and multiple 

mutations. Therefore, obtained band pattern by SSCP method requires DNA 
sequence analyses to identify the mutations. Finally, we can say that the 

knowledge of epidemiology of P. aeruginosa isolates in soil samples may allow 

the establishment of preventive measures to decrease bacterial infections (Stout 

et al., 2007).  
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