

SOLID STATE FERMENTATION FOR ENZYME PRODUCTION FOR FOOD INDUSTRY

Bahtir Hyseni^{1, 2}, Ali Özhan Aytekin¹, Emrah Nikerel^{*1}

Address(es): Emrah Nikerel,

¹Yeditepe University, Genetics and Bioengineering Department, Kayışdağı Cad. 34755Istanbul, Turkey phone number: +90 216 5780618 ²University of Mitrovica, Department of Engineering and Food Technology, Parku Industrial "Trepça", 40000 Mitrovica, Kosovo

*Corresponding author: emrah.nikerel@yeditepe.edu.tr

doi: 10.15414/jmbfs.2018.7.6.615-622

ARTICLE INFO	ABSTRACT
Received 18. 3. 2018 Revised 27. 3. 2018 Accepted 9. 4. 2018 Published 1. 6. 2018 Review	The use of enzymes for improved production and enhanced quality of industrial products in particular fermented foods, received considerable attention of both academic studies as well as industries. This in turn, triggered interest in re-evaluating alternative new or existing technologies in the field of enzyme production. Solid State Fermentation (SSF) is briefly defined as the fermentation with far less (to almost no) free water when compared to the submerged fermentation. The sufficient amount of the moisture is needed to maintain cellular growth. SSF exhibits interesting features, e.g. considerably less water use, therefore more environmentally friendly, easier to downstream, decreased overall process cost, improved product stability, larger portfolio of enzymes or locally very specific productivity rates owing to the heterogeneity of the substrate of generation of sub-populations. This review lists and discusses the merits of the recent studies on the production of some of the well-studied enzymes in various industries, namely amylase, proteinase and pectinase via solid-state fermentation, vis-à-vis to various factors affecting the process e.g. moisture content, aeration rate, substrate particle size, temperature, and inoculum size. A separate focus is dedicated on the differences between submerged and solid state fermentation, not only from a fermentation unit operation but also from overall process design point-of-view.
	Keywords: Solid-state fermentation, Amylase, Protease, Pectinase, Food industry, Industrial Enzymes

INTRODUCTION

Fermentation is defined as a process of breakdown of organic substances by microorganisms which results in a release of the desired products and heat (Stanbury et al., 2003). This is undoubtedly a crucial process in food industry for several final products to the end user, but also for production of several intermediate products or ingredients. Considering the free water content, there are two main groups, namely Submerged Fermentation (SmF) and Solid state fermentation (SSF). Owing to the abundant water content, the continuous phase (filling the space between nutrients) is liquid in SmF, while in SSF the continuous phase consists of gas (H. Chen, 2013). The solid material in SmF ranges between 1-7% (up to 15% for High Cell Density Fermentations), which mostly are the nutrients (carbon and nitrogen sources) typically homogeneously distributed in the liquid (Chen & Zhu, 2013). In contrast, SSF is characterized with low water content near the absence of the free water (Arora et al, 2017), or generally with necessary amount of moisture to maintain the microbial growth (Pandey, 2001; Steudler et al., 2015). The typical appearance of SSF is dry or mash-like Figure 1, and the content is rarely homogeneous, which is one of the challenges in solid state fermentation. During fermentation, the substrate typically becomes contagious in texture shown in Figure 2

Figure 1 Solid state material before fermentation and its mash appearance

Figure 2 Contagious texture of the solid material after fermentation

Besides the water content, SSF is additionally characterized based on aeration and agitation applied, which also have an impact on the texture of the substrate. From process point of view, this classification yields four different subgroups in SSF:

- a) unforced aeration, without mixing;
- b) forced aerated, without mixing;
- c) unforced aeration, forced mixing;
- d) forced aeration, forced mixing (Durand, 2003)

Solid-state fermentation recently has received great attention in scientific research and in application in numerous industries, owing its advantages compared to submerged fermentation e.g. simple process, concentrated fermented material translated as smaller equipment and space requirements, high product yield, easy and cheap downstream process, lack of foaming during fermentation (**Roy** *et al.*, **2013**). Additionally, SSF is conceived to be more natural for several microorganisms, in particular for fungi growing naturally in low moisture media, than SmF.

Advantages and disadvantages of solid state fermentation

The advantages and disadvantages of the solid state fermentations are going to be shown in the Table 1 below in the short outline. Metabolic overheating is described

as one of the disadvantages of SSF when compared to submerged fermentation (Chen & Zhu, 2013). The increase in temperature of the solid substrate during fermentation may damage the cells and decrease the production rate (Du *et al.*, 2014). Ashley *et al.*, reported using a mathematical model for packed bed bioreactor that periodic air reversal is not a good technique for preventing overheating, however, periodical stirring during a certain time was found to be useful to decrease the metabolic overheating temperature in solid matter (Ashley *et al.*, 1999).

Another important factor is the water content since all living systems need water for growth. Compared to fungi, bacteria needs higher moisture content for optimal growth, which in turn, is used as selection factor for fermentation, in favor of fungi (**Ramesh & Lonsane, 1990**). Interestingly, high levels of water is also unfavorable for enzyme production using SSF, since it decreases the oxygen transfer, as reported by (**Ramesh & Lonsane, 1990**), where α -amylase is produced by *Bacillus licheniformis* M27 using wheat bran as solid substrate. The authors concluded that optimal levels of water is needed for production of enzyme with highest activity.

a na	Thu valituge.	s and ansau var	itages of son	a state term	mation
Table 1	Advantages	s and disadvat	itages of soli	d state ferme	entation

Soliu state Termentati	011		
Factors	Advantages	Disadvantages	Ref.
Water content	Water content in the medium is low	Evaporation water during the	(Ozdemir <i>et al.</i> , 2012; Torrado <i>et al.</i> , 2011)
Concentrated product	Produced products are more concentrated, production rate is high, high stability of the product	Hard to adjust the pH inside the solid matter	(Karp <i>et al.</i> , 2015; Ortiz <i>et al.</i> , 2016)
Downstream process	Easy and cheap downstream process, no need for complicated reactor	Hard to get rid of the solid material after the downstream process	(Ertan Inceoglu <i>et al.</i> , 2014b; Zaslona & Trusek-Holownia, 2015)
Process	Simple fermentation process, no foam formation	Problems with scaling up agitation and aeration	(El-Shishtawy <i>et al.</i> , 2015; Samarntarn, <i>et al.</i> , 1999)
Environmental concern	Environmentally friendly, low output waste	Realize of methane (which if it is used for energy can cause no harm)	(Chen <i>et al.</i> , 2014; De Azeredo, <i>et al</i> , 2006)
Suitability for micro.	Suitable for work with filamentous fungi	Problem with bacteria as a reason of low water activity	(Du <i>et al.</i> , 2014; Mukhtar & Ikram., 2012)
Media and inoculum	Nutrients of the medium are more concentrated, Minimize catabolite repression	High amount of inoculum more than 10% hard to homogenize the content	(Ertan <i>et al.</i> , 2014a; Holker <i>et al.</i> , 2004; Pham, <i>et al.</i> , 2010)
Structure	Can be realized in open environment, Gas phase as continuous phase	Problems with substrate shrinkage, Sampling is more complicated than in submerged fermentation	(H. Kh. <i>et al.</i> , 2011) (J. Chen & Zhu, 2013)
Contamination, Indigenous culture	Easy bacterial contamination control, fermentation with indigenous culture, small work space	Hard in controlling metabolite temperature realized during the process	(El-Shishtawy <i>et al.</i> , 2015) (Karp <i>et al.</i> , 2015; Tabassum, <i>et al.</i> , 2014)
Cost	Cheap agro industrial, material cheap overall process		(Castilho <i>et al.</i> , 2000; Ferracini- Santos & Sato, 2009; Shabbiri <i>et al.</i> , 2012)

PRODUCTS OF SOLID STATE FERMENTATION

Several food products are traditionally produced via SSF. The well-known red rice, produced by fermentation of rice grains using the fungi Monascus purpureus, known as Koji process, is an example of SSF. Currently this is typically performed in tray reactors stacked in a temperature and moisture controlled fermentation rooms, used to produce various products in so-called "Koji bed"(Karthikeyan & Sivakumar, 2010). Beyond Koji, SSF has drawn increasing amount of attention and has been used for the manufacture of commercially important products in food, pharmaceutical, medical, agro, and biofuel industry. Production of aroma components via SSF for food applications have been reported. An example is the Chinese light-style liquor, for which the specific aroma was attributed to Pichia anomaly during SSF (Kong et al., 2014). Biofuel production from agricultural and food residues using bacteria or fungi via SSF have been reported (Chen et al., 2014; Zhou et al., 2015). On medical applications, SSF has been reported to be used for antibiotics production, in particular Penicillin using Penicillium chrysogenum which increased the production (Barrios-Gonzalez et al., 1988). About ten years later, the use of a cocktail of Streptomyces have been reported to be used for tetracycline production (Asagbra et al., 2005), focusing further in environmental parameters like temperature, pH and moisture content. The authors reported 4.3 fold higher production rate compared with submerged fermentation, indicating SSF as promising alternative for tetracycline production. Other studies focusing on other antibiotics via SSF, meroparamycin, are also reported (El-Naggar, 2009). Despite the large portfolio of products via SSF is available, enzymes are the most important one, since they have wide area of application, making them commercially highly demanded. This review is therefore going to explore the production of various enzymes in solid state fermentation, their characteristics and new improvements of the process. In particular we focus on proteases, amylases and pectinases and their application in food industry.

PROTEASE PRODUCTION IN SOLID STATE FERMENTATION

Proteases (proteinases) are a group of enzymes capable to hydrolyze the protein bonds resulting in the production of their constituents amino acids according to this, proteases are considered the most important industrial enzyme gaining around 60% of the total enzymes in the market (**Pokora** *et al.*, **2017**). There are known three types of proteases based on the optimum pH: acidic, neutral, and alkaline proteases. Acidic proteases have an irreplaceable impact in industries like animal feed, food and cheese processing *etc.* (Siala *et al.*, 2012). Neutral proteases are so important for the food industry for the reason of fewer bitterness byproducts realized after reaction due to intermediate rate reaction (Shabbiri *et al.*, 2012). Meanwhile, alkaline proteases are widely used in industries such detergent, leather, textile, photographic, food and feed, and chemical industry (Pokora *et al.*, 2017). Protease production for dehairing in leather industry was reported (Vijayaraghavan *et al.*, 2012) by using solid state fermentation. They used livestock waste as solid material supplemented with organic carbon and nitrogen sources and 140% (v/w) moisture content using *Bacillus subtilis* W. They reported a highly active enzyme and with a good potential in leather and detergent industry. As a follow up, concomitant enzyme production of cellulase and protease using separately *Bacillus cereus* AT and *Bacillus subtilis* IND19 and reported significant improvement in protease production (Vijayaraghavan *et al.*, 2014). In addition, for multi-enzyme production using cow dung, additional nutritional supplements are needed.

One of the most important advantages of SSF for enzyme production is the potentiality for using industrial residues with low price. In this context, an article using feather residues from poultry industry to produce protease was reported. Both SmF and SSF were used as fermentation process to make a collation between their indications in protease production by *Streptomyces sp. 594*. The protease produced by SmF resulted highly thermophilic and more active compared to protease produced in SSF. For the first time in this article *Streptomyces* are used for protease production by SSF (**De Azeredo** *et al.*, 2006). Moreover, residues like *Saccharomyces cerevisiae* dried cells from fermentation process were used for alkaline protease production by using *Cellulosimicrobium cellulans*, this medium showed to highly support protease production even though salt enrichment were necessary (Ferracini-Santos & Satos, 2009).

The substrate components of a solid medium were screened to improve protease production by *Bervibacterium linens* DSM 20158, substrate components which were analyzed as organic carbon and nitrogen source like rice husk, wheat bran, rice bran, soybean meal, yeast extract, corn steep liquor, casein and beef extract were screened. Moreover, a series of salt solutions were used too, the best composition for protease production they found to be the substrate prepared with soybean meal, wheat bran, (NH₄)₂SO₄ and a certain size of inoculum. They found that protease activity increased for two-fold with screened composition than in random one, all the components used during their study were low price and easy found which means that cost production will be decreased (**Shabbiri** *et al.*, **2012**).

Otherwise, to increase the production and to produce the specific proteases, recombinant transformation was used as technique. As example the work of (Gama Salgado et al., 2013), where Pichia pastoris was transformed to produce extracellular protease, found in *Mucor circinelloides*. This portease was highly capable for milk coagulation, even though the good result of transformation, solid state was not used as a substrate for recombinant cells. Moreover, authors (Mukhtar & Haq, 2013) compared the production of protease during SSF and SmF by using wild and mutant strains of *B. subtilis*, by treating the wild types of *B. subtilis* with ethyl methane sulfonate they prepared mutant types which they selected based on casein agar plates. Around ten agro-industrial byproducts were checked out for their indication in protease production, wheat bran with 2% addition of soybean was found to give the best result for protease production in both wild and mutant strains, furthermore, protease activity was around 1.96 fold higher by mutant strains than the wild strain.

Inoculum preparation conditions were shown to have a significant indication in protease and amylase production during solid state fermentation. During inoculum propagation, they used different carbon and nitrogen ratio when maltose and peptone were used as a source of them. A high ratio of carbon and nitrogen during inoculum preparation of *Aspergillus awamori* IOC-3914 bring a notable improvement in both amylase and protease production during solid state fermentation in babassu cake with 70% initiated controlled water content (**de Castro** *et al.*, **2011**).

Interestingly, concomitant production of enzymes (when two or more enzymes are produced in same conditions from the same microorganism in the same time) are successfully proceed by SSF. Protease and amylase are known as concomitant enzymes and was study point of the article (**Saxena & Singh, 2014**), in their study they tried improvement of the production of this concomitant enzyme from *Bacillus megaterium* B69 by using different agro-industrial waste as a substrate statistical optimized by using designed screening method Placket-Burman. The best production of the concomitant enzyme for around two fold by using response surface methodology (RSM) to screen the amount of the variables. Table 2 summarizes optimal condition for maximal production of protease by different microorganisms.

Table 1 Summary and optimum conditions of various studies focusing on Protease production using SSF

Microorga	aubstrate	Opt	Opt	Opt moisture	Opt inoc. size	Opt	Time of	Activity rez.	Reference	
nisms	substrate	temp(°C)	pН	(%)	(%)	Reactor type	ferment (h)	(U.g ⁻¹)	Kelefence	
	Cow dung									
	Animal tissue 5									
Danillara	(g/l)					250ml Erlan			Witawawaghaw	
Baculus	Beef extract 1.5	37	8	120	6	2301111 Effett	72	4813	(vijayaragilav	
cereus	Yeast extract 1.5					TUg			an <i>et al.</i> , 2014)	
	Sodium chloride 5									
	Skim milk 10									
Bacillus	Mustard oil cake					250ml Frlen			(Savona &	
megateriu	Rasal media	37		45		10g	84	1242	(Baxena &	
<i>m</i> B69	Dasar media					105			511gii, 2014)	
Bacillus	Wheat bran	37		50	10	250ml Erlen	12	85.03	(Mukhtar &	
subtilis	Soy bean meal	57		50	10	250mi Enen	72	05.05	Haq, 2013)	
Brevibacter										
ium linens	soybean male	37	7 2	90	3.5		120	2051	(Shabbiri <i>et al.</i> ,	
DSM		57	1.2	90	5.5		120	2031	2012)	
20158										

Legend: inoc.-inoculum, Erlen- Erlenmeyer

AMYLASE PRODUCTION BY SOLID STATE FERMENTATION

Amylase enzyme hydrolyses polysaccharides, in particular starch into smaller (mono or oligo) sugars. Amylase is an important enzyme used in food, fuel, environmental, and pharmaceutical industries

Similarly to protease, the use of SSF in amylase production has drawn increasing attention. In 2000 a group of authors (**Mulimani & Patil Ramalingam, 2000**) published an article about α -amylase production under SSF using the fungus *Gibberella fujikuroi* using wheat bran, soy meal, rice bran were used as substrate. To moisten substrate, a mixture of different salt solution was used. At the end of fermentation, 0.2 M acetate buffer was used to wash the fermentation and assaying for amylase activity, they reported that wheat bran as substrate yields the highest amylase activity.

Filamentous fungi are known for its high production of a large portfolio of enzymes, and it is also accepted as a very suitable host for solid state fermentation. *Aspergillus flavours* were used to produce α -amylase during solid state process in which *Amaranthus paniculatas* (velvet flower) grains was used as basic solid matter. The medium optimization experiments aimed for maximum amylase production and these have been designed following a Plackett-Burman fractional factorial design in order to select four significant ingredients among fifteen available ones. They concluded from the results that most significant factor in medium optimization are corn steep liquor, NH4H2PO4, NaCl, and CaCl₂.

The screening study was followed by detailed Response Surface Methodology approach, and the optimization resulted in an eight fold increase in activity when compared to control case (Viswanathan & Surlikar, 2001). Bogar et al reported the use of 11strains of Aspergillus oryzae to produce amylase via SSF, using spent brewing grain or corn fiber as solid matter in tray mode (Bogar et al., 2002). Aiming for medium optimization, they first screened the significant medium components starting from 11 components, and they found that most significant medium components are starch, corn steep liquor, ammonium nitrate, maltose and soybean meal. The strain that resulted with highest amylase activity was Aspergillus oryzae NRRL1808 in spent brewing grain at 67% moisture and 25°C reaching up to 4519 U.g-1 of dry matter. All in all, Aspergillus spp. have been well studied for amylase production: A. oryzae NRRL 6270 using spent brewing grains in a lab scale reactor, reaching 6870 U.g-1 after optimizing temperature, moisture content, inoculum size and incubation time (Francis et al., 2002). The use of rice bran, supplemented with soybean flour and cassava starch and A. oryzae culture, focusing on shelf-life of the resulting enzyme for which both supplements (soyban flour and cassava starch) increased the shelf-life of the enzyme. Using molecular biology tools, Biesebeke *et al.*, deleted the endo-protease encoding gene pclA and pg/pi-tp gene encoding phosphatidylinstol Transfer proteins, resulting 50% increase in amylase production (**Biesebeke** *et al.*, 2005). Another fungus used for amylase production was *Neurospora crass* CFR 308 and as solid substrate coffee pulp, coffee cherry husk, spent coffee and their combination was used. The highest activity per dry matter was gained when coffee pulp was used, with 60% moisture, after five days of fermentation (**Murthy** *et al.*, 2009).

In addition to fungi, bacteria is also used for the production of amylase, in using SSF. Bacteria, in turn needs generally higher moisture content in fermentation media, though there are occasional reports, typically with extremophiles stating otherwise an example is reported by (**R. Kumar** *et al.*, **2010**), where *Bacillus* was used for keratinase production. An advantage of bacteria is the faster growth rate, shortening the fermentation time and making overall process economically more attractive (**Baysal** *et al.*, **2003**). Half of the fermentation time with fungi Similar comparison was reported between *Bacillus* and *Aspergillus* stating that bacteria reaches the highest activity after 48h while fungi reaches its maximum at 96h (**Soni** *et al.*, **2003**).

Thermo stable amylase are important for food industry, in particular in drink making. *B. subtilis* PS7 isolated from the hot springs are used to produce a high amount of thermo stable amylase, using wheat bran as solid substrate. They reported that optimum condition were, to use tap water instead of distilled or mineralized water, 60% of water content at 37° C (Sodhi *et al.*, 2004). Successfully alpha amylase production by using wheat bran at 37° C for 48h by *Bacillus subtilis* MTCC121 in solid state fermentation was reported by authors (Raul *et al.*, 2014). The downstream process for purifying the raw enzyme requested 30-70% (NH₄)₂SO₂ even though the purifying process need to be improved. The effect of using different substrates on amylase production has also been reported e.g. (Shukla & Kar, 2006).

Recently, considerable attention has been given to medium optimization using agricultural byproducts for SSF, in amylase production, typically at lab scale, using 5-40g of solid matter. Most frequently studied parameters are temperature, time of incubation, particle size, pH, moisture content, inoculum size and time of incubation (**Dojnov** *et al.*, **2015**; **Mustafa** *et al.*, **2016**; **Saha** *et al.*, **2014**; **Sahnoun** *et al.*, **2015**), while the problem of aeration and metabolic overheating is scarcely studied. Table 3 summarizes optimal conditions reported in various studies for maximal production of amylase.

Table 2 Summary	and optimum	conditions of	f various	studies	focusing	on Amy	lase	production	using	SSF
					<i>U</i>				<i>u</i>	

Microorga	substrate	Opt temp	Opt	Opt moisture	Opt inoc.	Opt	Time of	Activity	Reference
nisms		(°C)	pН	(%)	size	Reactor type	ferment (h)	(U.gds ⁻¹)	
Aspergillus oryzae NRRL1808	Spent brewing grain	25	6	67	2x10 ⁷ spores	500ml Erlen 5g	72	4519	(Bogar <i>et al.</i> , 2002)
Aspergillus niger	Triticale grains	28		30	19%	250ml Erlen 16g	120	158	(Dojnov <i>et al.</i> , 2015)
Penicillium chrysogenu m	Wheat bran	30		75	20%	250ml Erlen	144	750	(Ertan <i>et al.</i> , 2006)
Penicillium chrysogenu m	Wheat bran Sunflower oil meal Sugar beet oil cake (1:3:1)	30		75	20%	250ml Erlen	144	845	(Ertan <i>et al.,</i> 2006)
Aspergillus oryzaeNRR L 6270	Spent brewing grains	30		70	1x10 ⁷ spores/ml	250ml Erlen 5g	96	6870	(Francis <i>et al.</i> , 2002)
Gibberella fujikuroi	Wheat barn	32			50	250ml Erlen 20g	120	42	(Mulimani &Patil Ramalingam, 2000)
Neurospor a Crassa CFR308	Coffee pulp	28	4.6	60	1x10 ⁷ spores/ gds	250ml Erlen 10g	120	3908	(Murthy <i>et al.,</i> 2009)

Legend: gds-gram dry substrate, Erlen- Erlenmeyer , inoc.-inoculum

PECTINASE PRODUCTION BY USING SOLID STATE FERMENTATION

Pectinases represents a collection of enzymes, able to break down pectin which is a polysaccharide composed of galacturonic acid. Pectin is found in cell walls of plants, is therefore of central importance to food industry, in particular for fruit and vegetable processing. Examples include, clarification, decreasing the viscosity of juices, facilitating flavor extraction process, filtration *etc.* (Solis-Pereyra *et al.*, **1993**). Based on their mechanisms, pectinases are categorized into several subgroups, and include polygalacturonases, pectate lyases, and pectin methylesterase. Polygalacturonase, pectate lyase, and pectin methylesterase hydrolyze glycosidic bonds in the carbon chain; pectin esterase segregates off methoxyl groups (Acuna-Arguelles *et al.*, **1995; L. Castilho** *et al.***, 2000**).

Pectinase are produced using microorganisms via both SmF and SSF, the latter being more preferred (Solis-Pereyra *et al.*, 1993). Solis-Pereyra reported that pectinase production is around 11 times higher in SSF than in submerged fermentation, using *A. niger* as host. SSF is performed using sugarcane bagasse as substrate (supplemented with glucose at the beginning) and small amount of pectin for initiating the pectinase production, in glass columns as packed bed reactors. The submerged fermentation, chemically defined medium is used and performed in batch mode in flask. In the SSF, high sugar concentration increased pectinase production, while the opposite occurred in SmF (Solis-Pereyra *et al.*, 1993). Focusing back on the effect of initial glucose level in SSF with *A. niger* strains, (Solis-Pereyra *et al.*, 1996) reported that medium amount of glucose yields higher pectinase activity when compared to the high initial glucose levels, the reason is attributed to extreme pH decrease on the medium.

Patil *et al* compared production of pectinase between two *A. niger* strains (DMF27 and DMF45) in SmF where sunflower seeds are used as addition to defined medium while to SSF deseeded sunflower was used as substrate. The paper reported that *A. niger* DMF45 has higher productivity of pectinase in SSF, while *A. niger* DMF27 shows better productivity in submerged fermentation. (Patil &

Dayanand, 2006b). Same authors later optimized pectinase production in SSF and SmF by using the same strains, by changing pH, moisture content, temperature, inoculum size and particle size. SSF case improved more than SmF and the produced enzyme by using SSF reached higher activity and was more stable (**Patil & Dayanand, 2006a**). Similar outcomes are also reported by (**Martin et al., 2010**) for *Thermonuccor indicae-seudaticae* N31 and by (**S. Kumar et al., 2011**) for *A. niger* as a culture and by (**Acunaarguelles et al., 1994**) again for A. niger, but specifically studying the effect of water activity on pectinase production. Several other notable works on fungi (including *Penicillium spp., Thermoascus* and *Moniliella*) in SSF, studying the effect of various medium components, washing solutions, process conditions are reported (**Castilho et al., 2000; Gomes et al., 2002; Gomes et al., 2002; Gomes et al., 2004**)

Alternative to fungi, bacteria is also used for pectinase production via SSF to decrease fermentation time leading to economically more attractive process. In this context, Raj Kashyap reported in (Raj Kashyap et al., 2003) the use of Bacillus sp. DT7 to produce pectinase via SSF in different substrates optimized with a different salt solutions. Highest production rate is achieved with wheat bran with 75% moisture content, after 36h of fermentation. The salt solution included CaCl₂, MgSO4 and a multivitamin B solution which increases the productivity around 50%. Similar reports are published by (Sharma & Satyanarayana, 2012), where they used Bacillus pumilis and wheat barn and other agro-industrial residues as substrate in SSF. They suggested that manipulating the substrate level, moisture content and pH in SSF, the production rate would increase around 14 fold compared to SmF. Lastly, using recombinant DNA technology and importing the activator aepA from Erwinia carotovora to Escherichia coli HB101, resulted in an increase in pectinase, cellulase and protease production. The production was also significantly affected from the choice of substrate (Mei et al., 2013). Table 4 summarizes optimal conditions for maximal production of pectinase via bacteria and fungi.

Table 3 Summary and optimum conditions of various studies focusing on Pe	ectinase production using SSF
--	-------------------------------

Microorganisms	substrate	Opt temp (°C)	Opt pH	Opt moisture (%)	Opt inoc. size	Opt Reactor type	Time of ferment (h)	Activity rez.	Reference
Bacillus pumilus	Sesame oilseed cake, Wheat bran Citrus pectin (1:1:0.01)	40	9	70	25%	250ml Erlen 5g material	120	348(U.g ⁻¹) Dry bacterial bran	(Sharma & Satyanarayana, 2012)
Aspergillus niger	Lemon peel pomace	30	5	70	2x10 ⁷ spore /g	Column tray bioreactor	96	2181 (U.1 ⁻¹)	(Ruiz <i>et al.</i> , 2012)
Aspergillus niger NCIM 548	Wheat bran corn bran kinnow peel (2:1:2)	30	5	65		Erlen	144	179.83 (U.g ⁻¹)	(Kumar <i>et al.,</i> 2011)
Thermomucor indicae seudaticae	wheat bran and orange bagasse (1 : 1)	45		70	10ml in 5g	250ml Erlen 5g material		120 (U.ml ⁻¹)	(Martin <i>et al.</i> , 2010)
Aspergillus niger	deseeded sunflower head green gram husk sucrose 6%	34	5	65	1x10 ⁷ spore/g	250ml Erlen	90-120	30(U.g ⁻¹)	(Patil & Dayanand, 2006b)
Bacillus sp. DT7	Wheat bran polygalacturonic acid 1%w/V	37		75	50%	250ml Erlen 5g	36	8050 (U.gds ⁻¹)	(Raj Kashyap et al., 2003)
Thermoascus aurantiacus	Polygalactouranase Wheat bran Pectin lyase 10%sugarcane bagasse 90%organe bagasse	50	5 10.5	67	5mg dry micelial mass per g dry substrate	250ml Erlen 5g material	96	Pg 43 (U.g ⁻¹) Pl 40180 (U.g ⁻¹)	(Gomes <i>et al.</i> , 2002)
Penecillium viridicatum RFC3	Wheat bran banana and mango peel for PG Orange peel + banana and mango peel for PL	30	Appr oxim ately 5	40			96-120	Pg 55 (U.g ⁻¹) Pl 3540 (U.g ⁻¹)	(Castilho <i>et al.</i> , 2000)
Aspergillus niger CH4	sugar cane bagasse pith pectin sucrose urea, ammonium sulphate,	35	4.5	70		Column packed bed			(Acunaarguelles et al., 1994)
Aspergillus niger F3	Dried grinded and sifted citrus peel ammonium nitrate Sodium sulfate Magnesium sulfate Zinc sulfate	30	5	60	10%	horizontal drum bioreactor 2kg substrate	72	Around 4(U.mlh ⁻¹)	(Rodriguez- Fernandez, <i>et al.</i> , 2011)
Aspergillus awamori	Grape pomace	30	-	65		Petri dish			(Botella <i>et al.</i> , 2007)
Aspergillus niger	Peashrub Supplemented with Wheat bran Ammonium sulfate Rice dextrose	30 for 30h 23for 42h	6.5	60	4%	plate		36 (U.g ⁻¹)	(Debing <i>et al</i> , 2006)
Bacillus sp. DT7	Wheat bran polygalactouronic acid	37		75	40%	250ml Erlen 5g	36	8050 (U.gds ⁻¹)	(Kashyap <i>et al.</i> , 2003)

Legend: Pg-Polygalacturonase, Pl- Pectin lyase, gds- gram dry substrate, inoc.-inoculum, Erlen-Erlenmeyer

SCALING-UP IN SOLID STATE FERMENTATION

Considerable attention has spent on either process optimization or selection of substrates in lab scale for SSF, while studies on scale-up are comparatively untouched. We consider scale-up to be a significant problem in SSF, since optimum production process in larger scale drastically change when compared with the lab-scale conditions. The most momentous parameters in large scale SSF are the temperature gradient through the solid content, evaporation and aeration control, and local pH changes.

Koji is a traditional scaled-up SSF fermentation process, which is used to produce a Japanese food, which consist of soybean, wheat grains or rice fermented with fungi *Aspergillus oryzae* (Zhu &Tramper, 2013). During Koji fermentation there are several enzymes produced, most known are protease, amylase and lipase, which increased the nutritional value of fermented foods and also improved the flavor via the production of aroma compounds (Chancharoonpong *et al.*, 2012; Feng *et al.*, 2014). Tray reactors with different dimension and designs (e.g. sievelike) are used during Koji fermentation to support different parameters to increase the fermentation rate. Typically, the tray reactors filled with a (thick) layer of substrate are placed in a temperature and moisture controlled room, called Koji room. A solid state fermentation with tray reactor was analyzed by (**Ghildyal** *et al.*, **1992**) for gaseous concentration gradient and changed the thickness of the substrate layer. Even though the design of the trays would support the air distribution, the tray with thicker substrate layer (larger than 80mm), the distribution of gas decreased and similarly the activity of the produced enzyme also decreased. When the thickness of the layer is less than 18mm, the moisture decreases considerably faster (Jao *et al.*, **2011**).

In spite of the fact that though Koji fermentation is a large scale fermentation compared to other types for SSF reactor, Ghildyal *et al.* assessed the temperature gradients in substrate layers, resulting from the substrate depth (**Ghildyal et al.**, **1993**). In their study they included four range of substrate loads between 17.8-126.1kg/m² which consists of 40-270mm initial bed heights. Their results showed an increase in temperature gradient with the increase of the bed heights and the enzymatic production was decreased accordingly. They concluded that in scaling-up process for SSF reactors, bed depth is an important parameter to be optimized, considering temperatures gradients (**Ghildyal et al., 1993**). A successful story of reproducible lab-scale result to scaled-up 30kg Koji for protease production was

published by (**Malathi & Chakraborty, 1990**). During their research they did a gradual scaling-up starting form Erlenmeyer flask with 10g substrate to tray fermentation with 500g and finally to the Koji room with 1-30kg wheat bran.

Meanwhile, there have been several studies for different types of scaled-up reactors for SSF process. In 1997, a 50L fed-batch reactor was prepared as a pilot plant for production of giberellic acid. The amount of the wheat bran, in the beginning, was 6 kg plus for each kg of wheat bran 250 g of soluble starch have been added. The humidity, temperature and aeration flow temperature were monitored with probes inserted into the reactor. The reactor was fed with 500g of corn starch and 500ml of distilled water, every 24 hours for 72 hour. The aim of the work was to minimize the temperature gradient (both vertically and horizontally) and control the dry matter percentage of the solid medium inside the reactor by using aeration, agitation and the jacket from the outside of the reactor. They report that during initial stages (up to 75-100 h), maintaining the outlet temperature is easy, while the fermentation. The amount of giberellic acid per dry matter produced was around 3g per kg dry matter, and it is worth mentioning aseptic auto-sampler is used to take samples every time during fermentation process (**Bandelier et al., 1997**).

Oostra et al. reported a cooling system in SSF to produce Coniothyrium minitans spores which are used as biopesticide. For bioreactor selection and scale-up, they used lab experiments and mathematical simulation. Based on their results, conductive cooling through the wall in the packed-bed reactor (non-mixed) is unproductive but it gives a good effect in decreasing the temperature in scarped drum reactor (mixed). Additionally, they reported forced aeration for temperature control inside the reactor, which is found to be effective but with a side effect as substrate shrinkage resulting from evaporation. Saturated air was found to be not effective. They come into the conclusion that mixed reactor with conductivity cooling seems the best option for better production in large scale reactors (Oostra et al., 2000). In contrast with previous work, by using Koji room 200kg authors (Liu et al., 2003) suggested that increasing the humidity during the aeration step decreases the temperature (accumulated from metabolic activity) and decreases the losses in water content. Based on their outcome authors (Abraham et al., 2013) reported higher enzyme production from scaled up process than unscaled one, were they used soy fiber to produce alkaline protease in 500ml Erlenmeyer with 100g solid material for lab scale and in a 4.5L bioreactor with 1.25kg of solid matter. They suggested that there is no negative effect on enzyme activity from scaling up the process. This interestingly contradicts to the report in (Siumara & Da Silv, 2013) where they concluded that the production is 45 times lower in tray reactor than in lab scale, attributed to the metabolic heat accumulation in tray reactors. They concluded that tray reactor was not the appropriate for polygalacturonases production when cashew apple bagasse is used as substrate.

Alternative to tray reactors in SSF, fixed bed forced aerated reactor was proposed in (**Castro** *et al.*, **2015**). They used 2.3L capacity bioreactor aerated with humidified air. From their work, they suggested that babassu cake was well adopted for production of hydrolases enzymes in fixed bed reactor. Moreover, inappropriate aeration in large scale reactors can cause additional problems in gas emission during fermentation, as reported in (Maulini-Duran *et al.*, **2015**). The most problematic contamination gas emitted during the fermentation process were CH₄ and ammonia, typically related to temperature accumulation.

CONCLUSIONS

SSF is typically considered to be an easy and cheap method for various metabolite and enzyme production with concentrated products and high stability; and as such, it attracted increasing attention in food industry. A considerable number of research is devoted in enzyme production takes into consideration several abundant agro-industry byproducts, especially suitable for SSF. Moisture content, temperature, and variety of the substrate from the literature are well studied.

The challenges of SSF becomes more and more pronounced in later stages of fermentation, even more so in scale-up, when the actual production (of the enzyme or metabolite) occurs. Aeration and agitation are manipulated variables that are used in scaling-up the production, to avoid unwanted effects e.g. particle shrinkage, excess evaporation and metabolic heat accumulation.

At last, increased number of studies in genetically modified strains leads even more increased production capacity. Considering the literature, the following items needs further focus: aeration with saturated air, agitation, and cooling by conductivity in combination with the use of (possibly modified) species, well adopted to solid state fermentation.

Acknowledgements: The authors would like to acknowledge Yeditepe University Research Fund for financial support.

REFERENCES

Abraham, J., Gea, T., & Sánchez, A. (2013). Potential of the solid-state fermentation of soy fibre residues by native microbial populations for bench-scale alkaline protease production. *Biochem Eng J*, 74, 15-19. https://doi.org/10.1016/j.bej.2013.02.008

Acuna-Arguelles, M. E., Gutierrez-Rojas, M., Viniegra, G. G., & Favelatorres, E. (1995). production and properties of three pectinolytic activities produced by

Aspergillus niger in submerged and solid state fermentation. *Appl Microbiol Biotechnol*, 43, 6. <u>https://doi.org/10.1007/BF02431912</u>

Acunaarguelles, M., Gutierrezrojas, M., Viniegragonzalez, G., & Favelatorres, E. (1994). Effect of Water Activity on Exo-Pectinase Production by Aspergillus-Niger Ch4 on Solid-State Fermentation. *Biotechnol Lett*, 16(1), 23-28. https://doi.org/10.1007/Bf01022618

Arora, S., Dubey, M., Singh, P., Rani, R., & Ghosh, S. (2017). Effect of mixing events on the production of a thermo-tolerant and acid-stable phytase in a novel solid-state fermentation bioreactor. *Process Biochemistry*. https://doi.org/10.1016/j.procbio.2017.06.009

Asagbra, A. E., Sanni, A. I., & Oyewole, O. B. (2005). Solid-state fermentation production of tetracycline by Streptomyces strains using some agricultural wastes as substrate. *World Journal of Microbiology and Biotechnology*, *21*(2), 107-114. https://doi.org/10.1007/s11274-004-2778-z

Ashley, V. M., Mitchell, A., & Howes, T. (1999). Evaluating strategies for overcoming overheating problems during solid state fermentation ion packed bed bioreactors. *Biochem Eng J*, *3*, 9. <u>https://doi.org/10.1016/S1369-703X(99)00010-</u>

Bandelier, S., Renaud, R., & Durand, A. (1997). Production of gibberellic acid by fed batch solid state ferementation in an asepric pilot scale reactor *Process Biochemistry*, *32*, 4. <u>https://doi.org/10.1016/S0032-9592(96)00063-5</u>

Barrios-Gonzalez, J., Tomasini, A., Viniegra-Gonzalez, G., & Lopez, I. (1988). Penicillin production by solid state fermentation. *Biotechnol Lett*, *10*(11), 5. https://doi.org/10.1007/BF01027575

Baysal, Z., Uyar, F., & Aytekin, E. (2003). Solid state fermentation for production of alpha-amylase by a thermotolerant Bacillus subtilis from hot-spring water. *Process Biochemistry*, *38*(12), 1665-1668. <u>https://doi.org/10.1016/S0032-9592(02)00150-4</u>

Biesebeke, R. T., Record, E., van Biezen, N., Heerikhuisen, M., Franken, A., Punt, P. J., & van den Hondel, C. A. M. J. J. (2005). Branching mutants of Aspergillus oryzae with improved amylase and protease production on solid substrates. *Appl Microbiol Biotechnol*, 69(1), 44-50. https://doi.org/10.1007/s00253-005-1968-4

Bogar, B., Szakacs, G., Tengerdy, R. P., Linden, J. C., & Pandey, A. (2002). Production of alpha-amylase with Aspergillus oryzae on spent brewing grain by solid substrate fermentation. *Appl Biochem Biotechnol*, *102*, 453-461. https://doi.org/10.1385/Abab:102-103:1-6:453

Botella, C., Diaz, A., de Ory, I., Webb, C., & Blandino, A. (2007). Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. *Process Biochemistry*, 42(1), 98-101. https://doi.org/10.1016/j.procbio.2006.06.025

Castilho, L., R., Medronho, R. A., & Alves, T. L. M. (2000). Production and extraction of pectinases obtained by solid state fermentation of agroindustrial residues with A. niger. *Bioresour Technol*, 71, 5. <u>https://doi.org/10.1016/S0960-8524(99)00058-9</u>

Castilho, L. R., Polato, C. M. S., Baruque, E. A., & Sant'Anna Jr, G. L. (2000). Economic analysis of lipase production by *Peniciillium restrictum* in solid-state and submerged fermentations. *Biochem Eng J*, *4*, 8. <u>https://doi.org/10.1016/S1369-703X(99)00052-2</u>

Castro, A. M., Castilho, L. R., & Freire, D. M. G. (2015). Performance of a fixedbed solid-state fermentation bioreactor with forced aeration for the production of hydrolases by Aspergillus awamori. *Biochem Eng J, 93*, 303-308. https://doi.org/10.1016/j.bej.2014.10.016

Chancharoonpong, C., Hsieh, P.-C., & Sheu, S.-C. (2012). Enzyme Production and Growth of Aspergillus oryzae S. on Soybean Koji Fermentation. APCBEE Procedia, 2, 57-61. <u>https://doi.org/10.1016/j.apcbee.2012.06.011</u>

Chen, H. Z., Liu, Z. H., & Dai, S. H. (2014). A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. *Biotechnol Biofuels*, 7, 53. https://doi.org/10.1186/1754-6834-7-53

De Azeredo, L. A., De Lima, M. B., Coelho, R. R., & Freire, D. M. (2006). Thermophilic protease production by Streptomyces sp. 594 in submerged and solid-state fermentations using feather meal. *J Appl Microbiol*, *100*(4), 641-647. https://doi.org/10.1111/j.1365-2672.2005.02791.x

Debing, J., Peijun, L., Stagnitti, F., Xianzhe, X., & Li, L. (2006). Pectinase production by solid fermentation from Aspergillus niger by a new prescription experiment. *Ecotoxicol Environ Saf, 64*(2), 244-250. https://doi.org/10.1016/j.ecoenv.2005.01.002

de Castro, A. M., Teixeira, M. M., Carvalho, D. F., Freire, D. M., & Castilho Ldos, R. (2011). Multiresponse Optimization of Inoculum Conditions for the Production of Amylases and Proteases by Aspergillus awamori in Solid-State Fermentation of Babassu Cake. *Enzyme Res*, 2011, 457392. https://doi.org/10.4061/2011/457392

Dojnov, B., Grujic, M., & Vujcic, Z. (2015). Highly efficient production of Aspergillus niger amylase cocktail by solid-state fermentation using triticale grains as a well-balanced substrate. *Journal of the Serbian Chemical Society*, 80(11), 1375-1390. http://dx.doi.org/10.2298/JSC150317041D

Du, R., Yan, J., Feng, Q., Li, P., Zhang, L., Chang, S., & Li, S. (2014). A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks. *PLoS One*, *9*(4), e94480. https://doi.org/10.1371/journal.pone.0094480 Durand, A. (2003). Bioreactor designs for solid state fermentation. *Bioochemical Engineering Journal*, *13*, 13. <u>https://doi.org/10.1016/S1369-703X(02)00124-9</u> El-Naggar, M. Y. (2009). Solid-State Fermentation for the Production of

Meroparanycin by Streptomyces sp. strain MAR01. *J Microbiol Biotechnol,* 19(5), 468-473. <u>https://doi.org/10.4014/jmb.0807.457</u> El-Shishtawy, R. M., Mohamed, S. A., Asiri, A. M., Gomaa, A. B., Ibrahim, I. H.,

El-Shishtawy, K. M., Mohaned, S. A., Ashi, A. M., Gohiaa, A. B., Iofahihi, I. H., & Al-Talhi, H. A. (2015). Saccharification and hydrolytic enzyme production of alkali pre-treated wheat bran by Trichoderma virens under solid state fermentation. *BMC Biotechnol*, 15, 37. <u>https://doi.org/10.1186/s12896-015-0158-4</u>

Ertan, F., Balkan, B., Balkan, S., & Aktac, T. (2006). Solid state fermentation for the production of alpha-amylase from Penicillium chrysogenum using mixed agricultural by-products as substrate. *Biologia*, *61*(6), 657-661. https://doi.org/10.2478/s11756-006-0137-2

Ertan Inceoglu, F., Balkan, B., & Yarkin, Z. (2014a). Determination of the effects of initial glucose on the production of alpha-amylase from Penicillium sp. under solid-state and submerged fermentation. *Biotechnol Biotechnol Equip*, 28(1), 96-101. https://doi.org/10.1080/13102818.2014.901670

Ertan Inceoglu, F., Balkan, B., & Yarkin, Z. (2014b). Determination of the effects of initial glucose on the production of alpha-amylase from sp. under solid-state and submerged fermentation. *Biotechnol Biotechnol Equip*, 28(1), 96-101. https://doi.org/10.1080/13102818.2014.901670

Feng, Y., Chen, Z., Liu, N., Zhao, H., Cui, C., & Zhao, M. (2014). Changes in fatty acid composition and lipid profile during koji fermentation and their relationships with soy sauce flavour. Food Chem, 158, 438-444. https://doi.org/10.1016/j.foodchem.2014.02.147

Ferracini-Santos, L., & Sato, H. H. (2009). Production of alkaline protease from *Cellulosimicrobium cellulans*. *Brazilian journal of microbiology*, 40, 6. https://doi.org/10.1590/S1517-83822009000100008

Francis, F., Sabu, A., Nampoothiri, K. M., Szakacs, G., & Pandey, A. (2002). Synthesis of alpha-amylase by Aspergillus oryzae in solid-state fermentation. *J Basic Microbiol*, 42(5), 320-326. <u>https://doi.org/10.1002/1521-4028(200210)42:5<320::Aid-Jobm320>3.0.Co;2-6</u>

Gama Salgado, J. A., Kangwa, M., & Fernandez-Lahore, M. (2013). Cloning and expression of an active aspartic proteinase from Mucor circinelloides in Pichia pastoris. *BMC Microbiol*, *13*, 250. https://doi.org/10.1186/1471-2180-13-250

Ghildyal, N. P., Ramakrishna, M., Lonsane, B. K., & Karanth, N. G. (1992). Gaseous concentration gradients in tray type solid state fermentors Effect on yields and productivities. Bioprocess Engineering, 8, 67-72 https://doi.org/10.1007/BF00369266

Ghildyal, N. P., Ramakrishna, M., Lonsane, B. K., Karanth, N. G., & Krishnaiah, M. M. (1993). Temperature variations and amyloglucosidase leveles at differnet bed depths in a solid state fermentation system. The Chemical Engineering journal, 51, 24. https://doi.org/10.1016/0300-9467(93)80019-K

Gomes, E., Silva, R., Martins, E., S., & Silva, D. (2002). pectinase production by Penicillium viridicatum RFC3 by solid state fermentation using agroindustrial waste and agroindustrial by-products. *brazilian Journal of Mirobiology*, *33*, 6. https://doi.org/10.1590/S1517-83822002000400008

Gomes, E., Silva, R., Souza, S. R., & Martin, N. (2004). Pectinase production by fungal strains in solid state fermentation using agro-industrial bioproduct. *Brazilian Archives of Biology and Technology*, 47, 6. https://doi.org/10.1590/S1516-89132004000500018

Gomes, E., silva, R., Silva, D., & Martins Eda, S. (2002). Solid state production of thermostable pectinase from thermophilic thermoascus auranticus. *Process Biochemistry*, *37*, 5. <u>https://doi.org/10.1016/S0032-9592(01)00300-4</u>

H. Kh. Q. Ali, & M. M. D. Zulkali. (2011). Design aspects of bioreactors for solidstate fermentation: A review. *Chem. Biochem. Engineering*, 2(25), 11. https://doi.org/10.1007/978-0-387-75213-6_6

Holker, U., Hofer, M., & Lenz, J. (2004). Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. *Appl Microbiol Biotechnol*, *64*(2), 175-186. <u>https://doi.org/10.1007/s00253-003-1504-3</u>

Jao, C.-L., Ko, W.-C., & Hsu, K.-C. (2011). Studies on the cooking conditions and mechanical koji- making of black beans. Procedia Food Science, 1, 1388-1395. doi:10.1016/j.profoo.2011.09.206

Karp, S. G., Faraco, V., Amore, A., Letti, L. A., Thomaz Soccol, V., & Soccol, C. R. (2015). Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation. *Biomed Res Int*, 2015, 181204. <u>https://doi.org/10.1155/2015/181204</u>

Karthikeyan, A., & Sivakumar, N. (2010). Citric acid production by Koji fermentation using banana peel as a novel substrate. *Bioresour Technol*, *101*(14), 5552-5556. <u>https://doi.org/10.1016/j.biortech.2010.02.063</u>

Kashyap, D. R., Soni, S. K., & Tewari, R. (2003). Enhanced production of pectinase by Bacillus sp DT7 using solid state fermentation. *Bioresour Technol*, 88(3), 251-254. <u>https://doi.org/10.1016/S0960-8524(02)00206-7</u>

Kong, Y., Wu, Q., Zhang, Y., & Xu, Y. (2014). In situ analysis of metabolic characteristics reveals the key yeast in the spontaneous and solid-state fermentation process of Chinese light-style liquor. *Appl Environ Microbiol*, *80*(12), 3667-3676. https://doi.org/10.1128/AEM.04219-13

Kumar, R., Balaji, S., Uma, T. S., Mandal, A. B., & Sehgal, P. K. (2010). Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using Horn meal--a biowaste management. *Appl Biochem Biotechnol*, 160(1), 30-39. https://doi.org/10.1007/s12010-008-8452-4

Kumar, S., Sharma, H. K., & Sarkar, B. C. (2011). Effect of Substrate and Fermentation Conditions on Pectinase and Cellulase Production by Aspergillus niger NCIM 548 in Submerged (SmF) and Solid State Fermentation (SSF). *Food Science and Biotechnology*, 20(5), 1289-1298. <u>https://doi.org/10.1007/s10068-011-0178-3</u>

Liu, W., Li, D., & Wu, Y. (2003). Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. *Enzyme Microb Technol*, *32*, 6. <u>https://doi.org/10.1016/S0141-0229(02)00292-2</u>

Maulini-Duran, C., Abraham, J., Rodriguez-Perez, S., Cerda, A., Jimenez-Penalver, P., Gea, T., . . . Sanchez, A. (2015). Gaseous emissions during the solid state fermentation of different wastes for enzyme production at pilot scale. *Bioresour Technol*, 179, 211-218. https://doi.org/10.1016/j.biortech.2014.12.031

Martin, N., Guez, M. A. U., Sette, L. D., Da Silva, R., & Gomes, E. (2010). Pectinase production by a Brazilian thermophilic fungus Thermomucor indicaeseudaticae N31 in solid-state and submerged fermentation. *Microbiology*, 79(3), 306-313. <u>https://doi.org/10.1134/S0026261710030057</u>

Mei, Y., Chen, Y., Zhai, R., & Liu, Y. (2013). Cloning, purification and biochemical properties of a thermostable pectinase from Bacillus halodurans M29. *Journal of Molecular Catalysis B: Enzymatic, 94*, 77-81. https://doi.org/10.1016/j.molcatb.2013.05.004

Mukhtar, H., & Ikram UI, H. (2012). Concomitant production of two proteases and alpha-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor. *Braz J Microbiol*, *43*(3), 1072-1079. <u>https://doi.org/10.1590/S1517-838220120003000033</u>

Mukhtar, H., & Haq, I. (2013). Comparative evaluation of agroindustrial byproducts for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged and solid state fermentation. *ScientificWorldJournal*, 2013, 538067. https://doi.org/10.1155/2013/538067

Mulimani, V. H., & Patil Ramalingam, G. N. (2000). alpha-Amylase production by solid state fermentation: a new practical approach to biotechnology courses. *Biochem Educ*, 28(3), 161-163. <u>https://doi.org/10.1016/S0307-4412(99)00145-4</u>

Murthy, P. S., Naidu, M. M., & Srinivas, P. (2009). Production of alpha-amylase under solid-state fermentation utilizing coffee waste. *Journal of Chemical Technology* and *Biotechnology*, *84*(8), 1246-1249. https://doi.org/10.1002/jctb.2142

Mustafa, S. R., Husaini, A., Hipolito, C. N., Hussain, H., Suhaili, N., & Roslan, H. A. (2016). Application of Response Surface Methodology for Optimizing Process Parameters in the Production of Amylase by Aspergillus flavusNSH9 under Solid State Fermentation. *Brazilian Archives of Biology and Technology, 59*. https://doi.org/10.1590/1678-4324-2016150632

Oostra, J., Tramper, J., & Rinzema, A. (2000). Model-based bioreactor selection for large-scale solid-state cultivation of Coniothyrium minitans spores on oats. *Enzyme Microb Technol*, 27, 11. <u>https://doi.org/10.1016/S0141-0229(00)00261-1</u> Ortiz, G. E., Noseda, D. G., Ponce Mora, M. C., Recupero, M. N., Blasco, M., & Alberto, E. (2016). A Comparative Study of New Aspergillus Strains for Proteolytic Enzymes Production by Solid State Fermentation. *Enzyme Res*, 2016, 3016149. <u>https://doi.org/10.1155/2016/3016149</u>

Ozdemir, S., Matpan, F., Okumus, V., Dundar, A., Ulutas, M. S., & Kumru, M. (2012). Isolation of a thermophilic Anoxybacillus flavithermus sp nov and production of thermostable alpha-amylase under solid-state fermentation (SSF). *Annals of Microbiology*, 62(4), 1367-1375. <u>https://doi.org/10.1007/s13213-011-0385-4</u>

Pandey, A. (2001). Solid -state fermentation. *Biochem Eng J, 13*, 3. https://doi.org/10.1016/S1369-703X(02)00121-3

Patil, S. R., & Dayanand, A. (2006a). Optimization of process for the production of fungal pectinases from deseeded sunflower head in submerged and solid-state conditions. *Bioresour Technol*, 97(18), 2340-2344. https://doi.org/10.1016/j.biortech.2005.10.025

Patil, S. R., & Dayanand, A. (2006b). Production of pectinase from deseededsunflower head by Aspergillus niger in submerged and solid-state conditions.BioresourTechnol,97(16),2054-2058.https://doi.org/10.1016/j.biortech.2005.09.015

Pham, T. A., Kim, J. J., & Kim, K. (2010). Optimization of Solid-State Fermentation for Improved Conidia Production of Beauveria bassiana as a Mycoinsecticide. *Mycobiology*, 38(2), 137-143. https://doi.org/10.4489/MYCO.2010.38.2.137

Pokora, M., Zambrowicz, A., Zablocka, A., Dabrowska, A., Szoltysik, M., Babij, K., . . . Chrzanowska, J. (2017). The use of serine protease from Yarrowia lipolytica yeast in the production of biopeptides from denatured egg white proteins. *Acta Biochim Pol*, *64*(2), 245-253. <u>https://doi.org/10.18388/abp.2016_1316</u>

Ramesh, M. V., & Lonsane, B. K. (1990). Critical importance of the moisture content of the medium in alpha-amylase production by Bacillus Licheniformis M27 in solid-state ferementation system. *Appl Microbiol Biotechnol, 33*, 4. https://doi.org/10.1007/BF0017254

Raj Kashyap, D., Kumar Soni, S., & Tewari, R. (2003). Enhanced production of pectinase by Bacillus sp. DT7 using solid state fermentation. *Bioresour Technol*, 88(3), 251-254. <u>https://doi.org/10.1016/S0960-8524(02)00206-7</u>

Raul, D., Biswas, T., Mukhopadhyay, S., Kumar Das, S., & Gupta, S. (2014). Production and Partial Purification of Alpha Amylase from Bacillus subtilis (MTCC 121) Using Solid State Fermentation. *Biochem Res Int, 2014*, 568141. https://doi.org/10.1155/2014/568141

Rodriguez-Fernandez, D. E., Rodriguez-Leon, J. A., de Carvalho, J. C., Sturm, W., & Soccol, C. R. (2011). The behavior of kinetic parameters in production of pectinase and xylanase by solid-state fermentation. *Bioresour Technol*, *102*(22), 10657-10662. <u>https://doi.org/10.1016/j.biortech.2011.08.106</u>

Roy, S., Dutta, T., Sarkar, T. S., & Ghosh, S. (2013). Novel xylanases from Simplicillium obclavatum MTCC 9604: comparative analysis of production, purification and characterization of enzyme from submerged and solid state fermentation. *Springerplus*, *2*, 382. <u>https://doi.org/10.1186/2193-1801-2-382</u>

Ruiz, H. A., Rodríguez-Jasso, R. M., Rodríguez, R., Contreras-Esquivel, J. C., & Aguilar, C. N. (2012). Pectinase production from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. *Biochem Eng J*, 65, 90-95. <u>https://doi.org/10.1016/j.bej.2012.03.007</u>

Saha, K., Maity, S., Roy, S., Pahan, K., Pathak, R., Majumdar, S., & Gupta, S. (2014). Optimization of Amylase Production from B. amyloliquefaciens (MTCC 1270) Using Solid State Fermentation. *Int J Microbiol*, 2014, 764046. https://doi.org/10.1155/2014/764046

Sahnoun, M., Kriaa, M., Elgharbi, F., Ayadi, D. Z., Bejar, S., & Kammoun, R. (2015). Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: Optimization of culture conditions. *Int J Biol Macromol*, *75*, 73-80. https://doi.org/10.1016/j.ijbiomac.2015.01.026

Samarntarn, W., Cheevadhanarak, S., & Tanticharoen, M. (1999). Production of alkaline protease by a genetically engineered Aspergillus oryzae U1521. *J Gen Appl Microbiol*, 45(3), 99-103. https://doi.org/10.2323/jgam.45.99

Saxena, R., & Singh, R. (2014). Contemporaneous Production of Amylase and Protease through CCD Response Surface Methodology by Newly Isolated Bacillus megaterium Strain B69. *Enzyme Res, 2014*, 601046. https://doi.org/10.1155/2014/601046

Shukla, J., & Kar, R. (2006). Potato peel as a solid state substrate for thermostable alpha-amylase production by thermophilic Bacillus isolates. *World J Microbiol Biotechnol*, 22(5), 417-422. <u>https://doi.org/10.1007/s11274-005-9049-5</u>

Siala, R., Frikha, F., Mhamdi, S., Nasri, M., & Kamoun, A. S. (2012). Optimization of acid protease production by Aspergillus niger I1 on shrimp peptone using statistical experimental design. *ScientificWorldJournal*, 2012, 564932. https://doi.org/10.1100/2012/564932

Siumara R., J, N., & da Silv, F. L. H. (2013). Scale Up of Polygalacturonase Production by Solid State Fermentation Process. <u>https://doi.org/10.5772/53152</u>

Shabbiri, K., Adnan, A., Jamil, S., Ahmad, W., Noor, B., & Rafique, H. M. (2012). Medium optimization of protease production by Brevibacterium linens DSM 20158, using statistical approach. *Braz J Microbiol*, *43*(3), 1051-1061. https://doi.org/10.1590/S1517-838220120003000031

Sharma, D. C., & Satyanarayana, T. (2012). Biotechnological Potential of Agro Residues for Economical Production of Thermoalkali-Stable Pectinase by Bacillus pumilus dcsr1 by Solid-State Fermentation and Its Efficacy in the Treatment of Ramie Fibres. *Enzyme Res*, 2012, 281384. <u>https://doi.org/10.1155/2012/281384</u>

Sodhi, H. K., Sharma, K., Gupta, J. K., & Soni, S. K. (2005). Production of a thermostable alpha-amylase from Bacillus sp PS-7 by solid state fermentation and its synergistic use in the hydrolysis of malt starch for alcohol production. *Process Biochemistry*, 40(2), 525-534. <u>https://doi.org/10.1016/j.procbio.2003.10</u>.

Solis-Pereyra, S., Favela-Torres, E., Gutierrez-Rojas, M., Roussos, S., Saucedo-Castaneda, G., Gunasekaran, P., & Viniegra, G. G. (1996). Production of pectinases by Aspergillus niger in solid state fermentation at high initial glucose concentrations. *World J Microbiol Biotechnol, 12, 3.* https://doi.org/10.1007/BF00360924

Solis-Pereyra, S., Favela-Torres, E., Viniegra-Gonzalez, G., & Gutierrez-Rojas, M. (1993). effects of different carbon sources on synthesis of pectinase by Aspergillus niger in submerged and solid state fermentation. *Applied Microbiology and Biotechnology*, *39*, 5. <u>https://doi.org/10.1007/BF00166845</u>

Soni, S. K., Kaur, A., & Gupta, J. K. (2003). A solid state fermentation based bacterial alpha-amylase and fungal glucoamylase system and its suitability for the hydrolysis of wheat starch. *Process Biochemistry*, *39*(2), 185-192. https://doi.org/10.1016/S0032-9592(03)00058-X

Steudler, S., Bohmer, U., Weber, J., & Bley, T. (2015). Biomass measurement by flow cytometry during solid-state fermentation of basidiomycetes. *Cytometry A*, 87(2), 176-188. <u>https://doi.org/10.1002/cyto.a.22592</u>

Tabassum, R., Khaliq, S., Rajoka, M. I., & Agblevor, F. (2014). Solid State Fermentation of a Raw Starch Digesting Alkaline Alpha-Amylase from Bacillus licheniformis RT7PE1 and Its Characteristics. *Biotechnol Res Int, 2014*, 495384. https://doi.org/10.1155/2014/495384

Torrado, A. M., Cortes, S., Manuel Salgado, J., Max, B., Rodriguez, N., Bibbins, B. P., . . . Manuel Dominguez, J. (2011). Citric Acid production from orange peel wastes by solid-state fermentation. *Braz J Microbiol*, 42(1), 394-409. https://doi.org/10.1590/S1517-83822011000100049

Vijayaraghavan, P., Arun, A., Al-Dhabi, N. A., Vincent, S. G., Arasu, M. V., & Choi, K. C. (2016). Novel Bacillus subtilis IND19 cell factory for the simultaneous production of carboxy methyl cellulase and protease using cow dung substrate in

solid-substrate fermentation. *Biotechnol Biofuels*, 9, 73. https://doi.org/10.1186/s13068-016-0481-6

Vijayaraghavan, P., Lazarus, S., & Vincent, S. G. (2014). De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: Biosynthesis and properties. *Saudi J Biol Sci, 21*(1), 27-34. https://doi.org/10.1016/j.sjbs.2013.04.010

Vijayaraghavan, P., Vijayan, A., Arun, A., Jenisha, J. K., & Vincent, S. G. (2012). Cow dung: a potential biomass substrate for the production of detergent-stable dehairing protease by alkaliphilic Bacillus subtilis strain VV. *Springerplus*, *1*, 76. https://doi.org/10.1186/2193-1801-1-76

Viswanathan, P., & Surlikar, N. R. (2001). Production of alpha-amylase with Aspergillus flavus on Amaranthus grains by solid-state fermentation. *J Basic Microbiol*, 41(1), 57-64. <u>https://doi.org/10.1002/1521-4028(200103)41:1<57::AID-JOBM57>3.0.CO:2-S</u>

Zaslona, H., & Trusek-Holownia, A. (2015). Enhanced production of polygalacturonase in solid-state fermentation: selection of the process conditions, isolation and partial characterization of the enzyme. *Acta Biochim Pol*, 62(4), 651-657. https://doi.org/10.18388/abp.2015_1081

Zhou, S., Raouche, S., Grisel, S., Navarro, D., Sigoillot, J. C., & Herpoel-Gimbert, I. (2015). Solid-state fermentation in multi-well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass. *Microb Biotechnol, 8*(6), 940-949. https://doi.org/10.1111/1751-7915.12307

Zhu, Y., Tramper, J., (2013) Koji-where East meets West in fermentation. *Biotechnology Advances*, 31, 1448-1457. https://doi.org/10.1016/j.biotechadv.2013.07.001

Books:

Chen, H. (2013). *Modern Solid state ferementation* New york, London: Springer, Dordrecht.

Chen, J., & Zhu, Y. (2013). Solid state fermentation for foods and bevereages. New York: CRC Press.

Stanbury, P. F., Whitaker, A., & Hall, S. J. (2003). *Principles of fermentation Technology*. Great Britain Butterworth Heinmann.