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INTRODUCTION 

 

The digestive tract of fish is a habitat of heterogeneous microflora and is 

colonized by a high variety and number of microorganisms (Burr et al., 2005). 

The existing symbiosis between host and the intestinal microflora is of great 

significance for all live organisms, including fish (Sugita et al., 1997). In fish, 

the gut microbiota is important for digestion of food, protection of fish against 

the bacterial pathogens and development of immunological response. Impairment 

in balance of gut microbiota affects the fish health, consequently, the stability and 

composition of gut microbiota are important (Gómez and Balcázar, 2008). 

Composition of fish gut microbiota depends on various influencing factors, 

including fish species, age, nutritional, genetic factors and environmental 

conditions of habitat (Gómez and Balcázar, 2008; Floris et al., 2013). 

Differences between the composition of intestinal microbiota of marine and 

freshwater fish were identified and the freshwater fish gut microorganisms were 

more diverse with the genera Aeromonas, Flavobacterium, Pseudomonas and the 

family Enterobacteriaceae were found to be dominant (Skrodenyté-

Arbačiauskiené, 2008). Composition of gut microbiota may differ between the 

individual fish and fish species (González et al., 1999).  

Since the gut microbiota consist of various groups of microorganisms of different 

functional significance, an establishment of balanced gut microflora is essential. 

The normal indigenous microbiota act competitively and prevent the colonization 

of gut by pathogens, however, the different other groups of pathogenic 

microorganisms of fish, animal and human health significance can be found in 

gut (Austin, 2006). Thus, the identification and analysis of fish gut microbiota 

helps not only recognize the composition of fish microflora in different 

environments, but also to tackle potentially pathogenic microorganisms affecting 

the fish health. Fish is an important food source and the studies on fish gut 

microbiota are important for an assessment of fish health and safety of fish for 

consumption as well (Holben et al., 2002).  

Freshwater fish is a significant part of fish fauna in Latvia and usually the most 

accessible for fishermen. Of total more than 40 freshwater species represented, 

roach Rutilus rutilus, perch Perca fluviatilis and bream Blicca bjoerkna were 

found to be the main species caught by fishermen in inland waters (Birzaks, 

2008).  

Matrix assisted laser desorption ionization-time of flight mass spectrometry 

(MALDI-TOF MS) has emerged in the recent years as a reliable and rapid 

method for identification and characterization of microorganisms. The MALDI-

TOF MS has several advantages in comparison with microbiological method in 

terms of sensitivity and economical aspects, including processing, application 

and staff costs. The applications of the MALDI-TOF for identification of 

microorganisms, detection of food-borne pathogens, strain typing, 

characterization of antibiotic resistance, epidemiological studies etc. were 

described (Singhal et al., 2015). The studies on the characterization of freshwater 

fish microbiota with MALFI-TOF MS are very limited.  

The aim of the present study was to identify and analyse the freshwater fish gut 

microbiota with MALDI-TOF MS Biotyper. 

 

MATERIAL AND METHODS 

 

Sampling 

 

Altogether, an amount of 28 freshwater fish were collected in Latvia. Samples 

included roach (Rutilus rutilus n=15), crucian carp (Carassius carassius, n=5), 

perch (Perca fluviatilis, n=5) and bream (Blicca bjoerkna, n=3). Samples were 

obtained from fishermen immediately after angling (n=20) and purchased at retail 

market (n=8). Fish from retail market were purchased as a whole, ungutted fish. 

Sampled fish were placed on ice and transported to the laboratory for 

microbiological testing. Examination of fish was initiated within 2 h after 

sampling and the gut was aseptically removed from surrounding tissues and used 

for further investigations. 

The aim of the study was to investigate the composition of intestinal microflora of freshwater fish in Latvia. A total amount of 28 fish 

were collected from fishermen (n=20) and retail outlets (n=8), including roach Rutilus rutilus, n=15, crucian carp Carassius carassius, 

n=5, perch Perca fluvialitis, n=5, bream Blicca bjoerkna, n=3. Microbiological testing consisted of the detection of total viable count 

(TPC), Enterobacteriaceae and coliforms with subsequent identification with MALDI-TOF Biotyper. TPC, coliforms and 

Enterobacteriaceae counts ranged from 2.7±0.4 to 5.4±0.3, 2.4±1.5 to 3.7±0.7 and 2.00±1.2 to 3.7±2.5 log cfu/g in gut of wild crucian 

carp and retailed roach, wild perch and retailed roach, and crucian carp and bream, accordingly. The TPC, coliforms and 

Enterobacteriaceae counts were significantly higher in retailed fish than in wild fish gut samples (P≤0.05). Gut microbiota were 

represented by Proteobacteria (93.0%), Firmicutes (3.9%) and Ascomycota (3.1%). The most abundant families were 

Enterobacteriacea (50.8%) and Pseudomonadaceae (36.7%). Rahnella aquatilis, Serratia fonticola and Pantoe aagglomerans were the 

most abundant among Enterobacteriaceae while Pseudomonas extremorientalis and P. fragi among the Pseudomonadaceae. Results of 

the present study show that the gut of freshwater fish were mostly represented by Enterobacteriaceae and Pseudomonadaceae and the 

presence of fish bacterial pathogens must be considered. 
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Microbiological testing of gut content 

 

For microbiological testing, the total plate count (TPC), Enterobacteriaceae and 

total coliforms were detected. An amount of 1 g of the gut content was 

transferred to 9 mL of peptone buffered water (Oxoid, Basingstoke, United 

Kingdom) and mixed to obtain the initial dilution. The initial dilution was used 

for the preparation of further serial dilutions. Then, a quantity of 1 mL of the 

initial and serial dilutions was transferred in sterile Petri dishes and covered with 

15 mL of molten Plate Count Agar (PCA) for TPC, Violet Red Bile Glucose 

Agar (VRBGA) for Enterobacteriaceae and Violet Red Bile Lactose Agar 

(VRBLA) for total coliforms (Oxoid). After inoculation, the PCA plates were 

incubated at 30°C for 72h, but VRBGA and VRBLA at 37°C for 24h with 

evaluation of bacterial growth after incubation. All colonies were counted on 

PCA, while the typical Enterobacteriaceae and coliform colonies were 

enumerated on VRBGA and VRBLA. Altogether, one to twenty five colonies 

were selected from the each plate for further confirmation with MALDI-TOF. 

 

Identification of bacteria with MALDI-TOF MS Biotyper 

 

Altogether, 128 microbial colonies were used for confirmation and the colonies 

were picked up from agar, suspended in 300 μl of sterile distilled water and 

mixed thoroughly. Then, an amount of 900 μL of absolute ethanol (99%, Sigma-

Aldrich, USA) was added. The mixture was centrifuged at 13 000 x g for 2 min. 

Later, the supernatant was removed and the pellet was centrifuged. Residual 

ethanol was completely removed by pipetting and the pellet was allowed to dry at 

a room temperature. Subsequently, an amount of 10 μL of formic acid (70%, 

Sigma-Aldrich, USA) was added to the pellet and mixed with a sterile toothpick. 

Next, a 10 μL of acetonitrile (100%, Sigma-Aldrich, USA) was added and mixed 

thoroughly. The solution was centrifuged at maximum speed for 2 min and 1 μL 

of the supernatant was spotted on a polished MALDI target plate (Bruker 

Daltonics, Germany). Immediately after drying a 1 μL of the matrix solution was 

added to each spot and allowed to air dry. The matrix used was a saturated 

solution of HCCA: α-cyano-4-hydroxycinnamic acid (Bruker Daltonics, 

Germany) dissolved in 50 % acetonitrile with 0.025 % trifluoroacetic acid (TFA) 

(100%, Sigma-Aldrich, USA). The matrix solution preparation (2.5 mg of 

HCCA) contains 500 µL of acetonitrile, 475 µL of ultrapure water and 25 µL of 

trifluoroacetic acid. An amount of 250 µL of the solution was added to the 2.5 

mg of HCCA. Samples were processed in the MALDI-TOF MS (Microflex 

LT/SH, Bruker Daltonics, Germany) with flex Control software and results were 

obtained with Realtime Classification software (RTC) (Bruker Daltonics, 

Germany) (Kačániová et al., 2019).  

 

Statistical analyses 

 

All bacterial counts were transferred into a decimal log. The One-Way ANOVA 

test was used for calculation of significance of differences between bacterial 

counts in different fish species. 

 

RESULTS  

 

Total plate count (TPC) ranged from 2.7±0.5 to 5.4±0.3 log cfu/g in the gut of 

wild crucian carp and retailed roach, respectively. Coliform counts were from 

2.4±1.5 to 3.7±0.7 log cfu.g
-1

 in wild perch and retailed roach, but 

Enterobacteriaceae from 2.00±1.2 to 3.7±2.5 log cfu.g
-1

 in the gut of crucian 

carp and bream, accordingly (Table 1). The TPC, coliforms and 

Enterobacteriaceae counts were significantly higher in retailed fish gut than in 

wild fish gut samples (P≤0.05), while the significant differences between the 

bacterial counts of retailed fish were not identified (P≥0.05).  

 

 

Table 1 Total bacterial count, Enterobacteriaceae and coliform counts in gut freshwater fish (in log cfu/g) 

Species Origin No. of 

samples 

TPC Coliforms Enterobacteriaceae 

Roach Wild 10 4.39±0.57
a
 2.96±0.46

b
 1.97±1.41 

 Retailed 5 5.39±0.29
a
 3.69±0.69

b
 3.7±0.65 

Crucian carp Wild 5 2.72±0.46
a
 2.55±0.36

b
 1.95±1.15 

Perch Wild 5 4.15±0.53
a
 2.39±1.48

b 
2.74±0.61 

Bream Retailed 3 5.3±0.29
a
 3.62±2.35

b
 3.72±2.49 

a
 differences between TPC in wild roach and crucian carp were significant (P<0.05), while there were no 

significant differences between TPC in retailed roach and bream gut (P>0.05) 
b
 differences in coliform counts were not significant between wild (roach, crucian carp, perch) and retailed 

fish (roach, bream) (P>0.05) 
c
 differences in Enterobacteriaceae counts between wild (roach, crucian carp, perch) and retailed fish (roach, 

bream) were significant (P<0.05) 

 

The most abundant microbial phylum of fish gut was Proteobacteria (93.0%) 

followed by Firmicutes (3.9%) and Ascomycota (3.1%). The most abundant 

microbial families were Enterobacteriaceae (50.8%) and Pseudomonadaceae 

(36.7%) while the less abundant were Bacillaceae, Lactobacillaceae, 

Peptostreptococcaceae, Sphingomonadaceae and Xanthobactereaceae (0.8% 

each). Enterobacteriaceae was the predominant in gut of the wild roach (57.4%), 

crucian carp (50%), but there were no differences between the abundance of 

Enterobacteriaceae and Pseudomonadaceae in retailed roach and perch intestinal 

samples (P>0.05). The families Aeromonadaceae and Clostridiaceae were the 

most abundant in bream gut (33.3% each) (Table 2). The most diverse microbiota 

were recovered from the wild roach gut, but the less diverse from retailed roach 

gut with six and two phyla were identified, respectively. 

 

 

Table 2 Abundance of microorganisms in freshwater fish gut  

Family 

Wild roach 

Rutilus rutilus 

Roach retailed 

Rutilus rutilus 

Crucuan carp 

Carassius 

carassius 

Perch 

Perca fluvialitis 

Bream  

Blicca bjoerkna 

                                      No. of isolates (%) 

Aeromonadaceae 0 (0) 0 (0) 2 (5.9) 0 (0) 2 (33.3) 

Bacillaceae 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

Clostridiaceae 0 (0) 0 (0) 0 (0) 0 (0) 2 (33.3) 

Enterobacteriaceae 35 (57.4) 7 (50.0) 17 (50.0) 5 (38.6) 1 (16.7) 

Lactobacillaceae 0 (0) 0 (0) 0 (0) 0 (0) 1 (16.7) 

Peptostreptococcaceae 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

Pseudomonadaceae 22 (36.2) 7 (50.0) 13 (38.2) 5 (38.6) 0 (0) 

Sphingomonadaceae 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

Streptococcaceae 0 (0) 0 (0) 0 (0) 1 (7.6) 0 (0) 

Xanthobactereaceae 0 (0) 0 (0) 0 (0) 1 (7.6) 0 (0) 

Saccharomycetaceae 1.6 (0) 0 (0) 2 (5.9) 1 (7.6) 0 (0) 

Total 61 (100) 14 (100) 34 (100) 13 (100) 6 (100) 

 

Among the Enterobacteriaceae, the most abundant bacterial species were 

Rahnella aquatilis (17 isolates), Serratia fonticola (9 isolates) and Pantoea 

aagglomerans (8 isolates). Beside the Pseudomonadaceae, Pseudomonas 

extremorientalis and P. fragi were the most abundant (6 isolates). 

Rahnella aquatilis and Providencia heimbachae were the most abundant 

Enterobacteriaceae in wild (19.67%) and retail roach gut (21.43%), respectively. 

Pantoea agglomerans and Rahnella aquatilis were the most abundant in crucian 

carp gut (29.4%) but Enterobacter cloacae and Enterobacter amnigenus in perch 

and bream gut (40%) and one isolate (100%), respectively (Table 3). 
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Table 3 Microflora of gut of wild and retailed freshwater fish 

  Roach Crucian carp Perch Bream 

Family Identified species  Wild Retailed Wild Wild Retailed 

N=10 N=5 (n=5) (n=5) (n=3) 

  No. of isolates identified (%) 

Aeromonadaceae A. bestiarum 0 (0) 0 (0) 1 (2.9) 0 (0) 0 (0) 

 Aeromonas eucrenophila 0 (0) 0 (0) 0 (0) 0 (0) 1 (12.5) 

 Aeromonas hydrophila 0 (0) 0 (0) 0 (0) 0 (0) 1 (50) 

 Aeromonas veronii 0 (0) 0 (0) 1 (2.9) 0 (0) 0 (0) 

Bacillaceae Bacillus megaterium 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

Clostridiaceae Clostridium septicum 0 (0) 0 (0) 0 (0) 0 (0) 1 (12.5) 

 Clostridium chauvoei 0 (0) 0 (0) 0 (0) 0 (0) 1 (12.5) 

Enterobacteriaceae Buttiauxella ferragutiae 0 (0) 0(0) 3 (8.7) 0 (0) 0 (0) 

 Citrobacter gillenii 2 (3.3) 0 (0) 0 (0) 0 (0) 0 (0) 

 Enterobacter amnigenus 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Enterobacter cloacae 2 (3.3) 0 (0) 0 (0) 2 (15.3) 0 (0) 

 Ewingella americana 3 (4.9) 0 (0) 0 (0) 0 (0) 0 (0) 

 Hafnia alvei 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Klebsiella oxytoca 0 (0) 0 (0) 0 (0) 1 (7.7) 0 (0) 

 Enterobacter amnigenus 1 (1.6) 0 (0) 0 (0) 0 (0) 1 (12.5) 

 Moellerella wisconsensis 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Pantoea agglomerans 2 (3.3) 0 (0) 5 (14.8) 1 (7.7) 0 (0) 

 Pluralibacter pyrinus 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Providencia heimbachae 0 (0) 3 (21.6) 0 (0) 0 (0) 0 (0) 

 Rahnella aquatilis 12 (19.6) 2 (14.2) 5 (14.8) 0 (0) 1 (12.5) 

 Raoultella ornithinolytica 0 (0) 0 (0) 0 (0) 1 (20) 0 (0) 

 Serratia entomophila 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Serratia fonticola  4 (7.3) 1 (7.1) 4 (11.6) 0 (0) 0 (0) 

 Serratia liquefaciens 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Serratia plymuthica 2 (3.3) 0 (0) 0 (0) 0 (0) 0 (0) 

 Yersinia intermedia 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Yersinia ruckeri 0 (0) 1 (7.1) 0 (0) 0 (0) 0 (0) 

Lactobacillaceae Lactobacillus mucosae 0 (0) 0 (0) 0 (0) 0 (0) 1 (12.5) 

Peptostreptococcaceae Filifactor villosus 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

Pseudomonadaceae Pseudomonas antarctica 1 (1.6) 0 (0) 0 (0) 1 (20) 0 (0) 

 Pseudomonas brenneri 0 (0) 0 (0) 1 (2.9) 0 (0) 0 (0) 

 Pseudomonas 

extremorientalis 

2 (3.3) 0 (0) 4 (11.6) 0 (0) 0 (0) 

 Pseudomonas fluorescens 2 (3.3) 0 (0) 0 (0) 0 (0) 0 (0) 

 Pseudomonas 

frederiksbergensis 

2 (3.3) 0 (0) 2 (6) 0 (0) 0 (0) 

 Pseudomonas fragi 3(4.9) 3 (21.6) 0 (0) 0 (0) 1 (12.5) 

 Pseudomonas fulva 0 (0) 0 (0) 1 (2.9) 0 (0) 0 (0) 

 Pseudomonas gessardii 1 (1.6) 0 (0) 1 (2.9) 0 (0) 0 (0) 

 Pseudomonas grimontii 1 (1.6) 0 (0) 0 (0) 1 (20.0) 0 (0) 

 Pseudomonas koreensis 0 (0) 2 (14.2) 2 (6) 0 (0) 0 (0) 

 Pseudomonas libanensis 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Pseudomonas lundensis 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Pseudomonas marginalis 1 (1.6) 0 (0) 2 (6) 1 (20.0) 0 (0) 

 Pseudomonas orientalis 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Pseudomonas proteolytica 2 (3.3) 0 (0) 0 (0) 0 (0) 0 (0) 

 Pseudomonas putida 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Pseudomonas rhodesiae 0 (0) 1 (7.1) 0 (0) 0 (0) 0 (0) 

 Pseudomonas synxantha 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

 Pseudomonas 

thivervalensis 

0 (0) 1 (7.1) 0 (0) 0 (0) 0 (0) 

 Pseudomonas tolaasii 0 (0) 0 (0) 0 (0) 1 (7.7) 0 (0) 

 Presudomonas trivialis 0 (0) 0 (0) 0 (0) 1 (7.7) 0 (0) 

 Pseudomonas veronii 2 (3.3) 0 (0) 0 (0) 0 (0) 0 (0) 

Sphingomonadaceae Sphingopyxis terrae 1 (1.6) 0 (0) 0 (0) 0 (0) 0 (0) 

Streptococcaceae Streptococcus salivarius 0 (0) 0 (0) 0 (0) 1 (7.7) 0 (0) 

Saccharomycetaceae Candida pelliculosa 1 (1.6) 0 (0) 2 (6) 0 (0) 0 (0) 

 Pichia fermentans 0 (0) 0 (0) 0 (0) 1 (7.7) 0 (0) 

Xanthobacteraceae Starkeya novella 0 (0) 0 (0) 0 (0) 1 (7.7) 0 (0) 

Total  61 (100) 14 (100) 34 (100) 13 (100) 6 (100) 

 

DISCUSSION 

 

The TPC, Enterobacteriaceae and coliform counts identified in the present study 

were in agreement with the previously reported (Navarrete et al., 2010; Wu et 

al., 2010; Floris, 2013; Kluga et al., 2017). The bacterial counts in gut depend 

on environmental factors, water and feed quality and diet. Bacterial counts can 

vary between the individual fish but, in general, the gut is inhabited by a large 

number of microorganisms (Spanggaard et al., 2000). Bacterial counts in 

retailed fish were higher than in freshly caught fish that could be attributable to 

storage on ice before the sale, as it is known the bacteria may proliferate during 

the storage and impair quality of the fish product (Al Bulushi et al., 2008). Our 

results on the bacterial counts of freshly caught freshwater fish correspond to 

findings in fish gut originated from cold and relatively unpolluted waters 

(González et al., 1999). 

A phylum Proteobacteria was found to be predominating in gut of all studies 

freshwater fish species. Bacteria representing the Proteobacteria and the 

Firmicutes phylum were frequently reported to be present in fish gut. 

Proteobacteria was the predominated phylum in the gut of yellow catfish 

(Pelteobagrus fulvidraco), gilthead sea bream (Sparus aurata) and crucian carp 

Carassius gibelio (Wu et al., 2010; Floris, 2013; Kashinskaya et al., 2015). The 

results of our study support the observation that Proteobacteria were prevalent in 

the gut of freshwater fish (Kashinskaya et al., 2015). 

Enterobacteriaceae family was predominated in the gut of wild roach and 

crucian carp, while there were no differences between the abundance of 

Enterobacteriaceae and Pseudomonas in the gut of retailed roach, bream and 

perch. In general, our findings are in line with the previously reported and 

Enterobacteriaceae was found to be predominated in freshwater salmon (Salmo 

salar) and sea trout (Salmo trutta trutta) (Skrodenyté-Arbačiauskiené et al., 
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2008). Enterobacteriaceae and Pseudomonas were found to be the most 

abundant in the gut of roach (Rutilus rutilus) (Skrodenyté-Arbačiauskiené, 

2007). In contrast, Floris et al. (2013) reported that Pseudomonas spp. were 

predominant in gilthead sea bream (Sparus aurata) in two coastal lagoons of 

Sardinia. Pseudomonas are metabolically versatile microorganisms ubiquitous in 

the environment and frequently associated with fish and water as a habitat of fish 

(Vaz-Moreira et al., 2012). Results of our study show that Pseudomonas spp. 

alongside with Enterobacteriaceae are the important representatives of the 

intestinal microbiota of wild freshwater fish. Rahnella aquatilis, Serratia 

fonticola and Pantoea agglomerans of the Enterobacteriaceae family were found 

be the most abundant that is in agreement with the previous studies on broad 

distribution of the bacteria in the environment, including the fish. The bacteria 

were identified in water, soil, plants, snails, slug, molluscs and the intestinal tract 

of fish (Derlet and Carlson, 2004; Piotrowska-Seget et al., 2005; Skrodenyté-

Arbačiauskiené, 2007).  

Other microorganisms as Bacillus, Buttiauxella, Ewingella, Serratia, 

Providencia, Raoultella, Sphingomonas, Candida, Pichia and Starkeya were 

associated with water, soil, vegetables, foods, insects, plants and trees (White et 

al., 1996; Kelly et al., 2000; Hurst and Jackson, 2002; Barchiesi et al., 2005; 

Aravind et al., 2009; Vadkertiová et al., 2012). Additionally, C. gillenii and M. 

wisconsensis were recognized as the members of fish microflora in previous 

studies (Skrodenyté-Arbačiauskiené et al., 2008; Lü et al., 2011). Due to wide 

distribution of the microorganisms in the environment, they could enter the 

intestinal tract of fish. Our findings revealed that the gut of freshwater fish may 

be a habitat of those microorganisms. 

Pseudomonas spp. were frequently isolated from fish and are recognized to be 

the specific spoilage microorganism involved in the deterioration of the quality of 

freshly chilled fish (Gram and Dalgaard, 2002). Since the Pseudomonas spp. 

may develop the rapid growth in favourable condition, the predominance of 

Pseudomonas spp. in fish is undesirable and lead to the fish spoilage. P. fragi, P. 

lundensis and P. fluorescens were found to be the predominated in the fish at the 

end of shelf-life and contributed the spoilage (Tryfinopoulou et al., 2002). Thus, 

the abundance of Pseudomonas in the gut may results in additional contamination 

of fish fillet during the gutting and predisposes the bacterial spoilage processes 

(MacMillan and Santucci, 1990). 

Pseudomonas were associated with fish diseases and fish pathogenic 

Pseudomonas spp. identified in the present study. P. fluorescens was the 

causative agent of bacterial haemorrhagic septicaemia in rainbow trout, carp and 

chronic disease in catfish (Shahi and Mallik, 2014). P. koreensis caused the eye 

infection in golden mahseer in India (Shahi and Mallik, 2014), but P. putida 

ulcers in rainbow trout (Altinok et al., 2006). Alongside with the Pseudomonas 

spp., Hafnia alvei, Enterobacter cloaceae, Yersinia intermedia and Y. ruckeri 

were reported to be the fish pathogenic (Acosta et al., 2002; Toback et al., 2007; 

Sekar et al., 2008). Aeromonas are present primary in aquatic environments and 

A. hydrophila was found to inhabit normally the intestinal tract of fish (Carvalho 

et al., 2012). However, the bacteria may become the opportunistic fish pathogen 

in a variety of farmed fish during stressful growth conditions (Li et al., 2013). A. 

bestiarum and A. veronii are expected to be pathogenic for fish and were isolated 

from common carp and trout (Kozińska, 2007). Abovementioned bacteria and 

particularly Y. ruckeri may result in fish diseases with high mortality and 

attributed significant economic losses, therefore, the presence of those pathogens 

must be taken into consideration. The pathogenic microorganisms were isolated 

both from retail and wild fish, indicating the circulation of the pathogenic 

microorganisms in the environment and aquaculture. 

Fish may carry the microorganisms which are opportunistic pathogens or 

pathogenic to consumers. Consumption of fish contaminated with A. hydrophila, 

A. caviae and A. veronii bv. sobria may cause the foodborne gastroenteritis. 

Aeromonas were linked to wound and respiratory infections, septicaemia, liver 

abscesses, urinary tract and eye infections. K. oxytoca, E. cloaceae, P. 

agglomerans, R. aquatilis and R. ornitholytica are nosocomial pathogens 

responsible for different clinical manifestations, including the urinary tract, 

respiratory tract, wound, skin and soft tissues infections and bacteremia. 

Clostridium spp. may result in gas gangrene with human and the animal patient 

became affected (Tash, 2005; Cruz et al., 2007; Gorkiewicz, 2009). Our 

findings indicate that fish may serve as a source of the microorganisms of fish 

and public health significance. The present results reveal the potential risks of 

bacterial contamination of fishes from Latvia. Periodic monitoring of 

microorganisms pathogenic for fish and consumers, is important to identify any 

potential treat (Alikunhi et al., 2016). 

 

CONCLUSION 

 

In conclusion, the present study confirms the predominance of 

Enterobacteriaceae and Pseudomonadaceae in of the gut freshwater fish. The 

composition of microbiota may alter the fish health alongside with the quality 

and safety of fish meat and fish products. The fish intestinal tract may serve as a 

habitat for microorganisms with fish and public health significance, therefore the 

results of present study indicate that fish may be an important vector for 

transmission of potentially pathogenic microorganisms for fish and fish 

consumers.  
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