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INTRODUCTION 

 

Plant root system is the habitat of numerous microbial communities that regulate 

plant physiology and metabolism (Vurukonda et al., 2016). Plant growth-

promoting rhizobacteria act as i) biofertilizer, ii) rhizoremediator, iii) 
phytostimulator, and iv) stress controller (Lugtenberg and Kamilova, 2009). 

Bacteria, like Bacillus and Pseudomonas spp., are considered predominant 

(Podile and Kishore, 2007). Pseudomonas spp., and Bacillus spp., have been 
widely reported to be involved in the production of enzymes and hormones that 

alleviate stress, control pathogens, and promote growth and quality yield 

production (Lucy et al., 2004). Pseudomonas koreensis is a Gram-negative, 

motile, non-spore-forming,  yellow-white, multiple polar flagellated,  rod 

bacterium isolated from farming soil in Korea (Kwon et al., 2003). The type strain 

is LMG 21318. There is a wide range of plant growth promoting rhizobacteria 
(PGPR) species like Agrobacterium, Azospirillum, Arthrobacter, Azotobacter, 

Burkholderia, Caulobacter, Erwinia, Chromobacterium, Flavobacterium, 

Micrococcous,  and Serratia that was reported to improve plant growth and 
development. (Ahemad and Kibret, 2014).  

PGPR has been extensively reported to be involved in endogenous phytohormone 

production (Maheshwari, 2011) such as gibberellins (Bloemberg and 

Lugtenberg, 2001; Bottini et al., 2004; Gutiérrez‐Mañero et al., 2001). 
Endogenous hormones possess various plant growth promoting characteristics like 
flowering initiation, increase in plant height, enhancing seed germination, and 

mitigating stresses (Kang et al., 2017). Other organic compounds exuded by 

PGPR include organic acids, amino acids, nucleotides, phenolics, fatty acids, 
sterols, sugars, vitamins and plant growth regulators (Lugtenberg and Kamilova, 

2009). These secondary metabolites, especially organic acids, are involved in metal 
solubilization (Muleta et al., 2013; Zaidi et al., 2009).  

The beneficial impact of plant-microbe interaction has been reported by several 

authors, like Pseudomonades sp., Bacillus lentus,  and  Azospirillum improved 
photosynthetic pigments and antioxidant of basil plant under water stress (Heidari 

and Golpayegani, 2012). Likewise, Mesorhizobium sp. resist pesticides [herbicides 

(metribuzin and glyphosate), fungicides (hexaconazole, metalaxyl, and kitazin) 

insecticides and (imidacloprid and thiamethoxam)] and could promote growth of 

chickpea (Ahemad and Khan, 2012). Pseudomonas spp., and  P. chlororaphis 
solubilize phosphate and promote the growth of Coffea arabica L (Muleta et al., 

2013). Besides these, PGPR also play a key role in mitigating various biotic and 

abiotic stress-like pathogens (Park et al., 2017), drought (Lim and Kim, 2013), 
heavy metal (Islam et al., 2014), salt stress (Karlidag et al., 2013), and heat stress 

(Park et al., 2017). Moreover, the mechanism that involves the beneficial role of 

PGPR are well documented in the literature (Ahemad and Kibret, 2014; 

Beneduzi et al., 2012; Bhattacharyya and Jha, 2012; Kuiper et al., 2004; Mittal 

et al., 2017; Ryu et al., 2005). 

The plant-microbe interaction is the fundamental determinant of soil fertility and 

plant health (Heidari and Golpayegani, 2012). The changing lifestyle and the 

essential dietary concern of the people considered fresh vegetables as an important 

diet in their daily consumption to maintain good health (Huxley et al., 2004). The 
trend of fresh vegetable consumption has grown stronger around the world (López-

Gálvez et al., 2009). However, the safety concerns with regard to fungi, bacteria 

and other pathogens are emerging issues (Forghani and Oh, 2013; Seymour et 

al., 2002). Although, there exist several strain of pathogenic bacteria, 

Pseudomonas spp. have been widely reported as a beneficial species that are 

involved in healthy production of the plant (Ahemad and Kibret, 2014). 
However, to date, there is no report regarding the beneficial role of particularly P. 

koerensis MU2 strain. Therefore, the aim of the present study was to investigate 

the functional role of P. koreensis in order to evaluate growth and production of 
Chinese cabbage and lettuce. 

 

MATERIALS AND METHODS 
 

Screening of the microbes 

 

The soil from different agricultural land was collected from Daegu, South Korea 

to isolate plant growth-promoting rhizospheric microbes. One gram of the soil 

sample was suspended in 9 mL of saline (0.85% NaCl), diluted 5-folds, and spread 
on a petri dish containing Luria-Bertani (LB; Difco, USA) agar medium from each 

Microbial biofertilizers are considered environmentally safe tool for the healthy production of a plant. Massive application of synthetic 
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diluted solution. The plated sample was cultured in an incubator at 30°C for 4 days. 
The colonies of different microbial strains were distinguished and an individual 

strain from the different colonies was streaked on new LB plates and cultured in 

LB broth by incubating in a shaking incubator. Gibberellins and organic acid 
production ability of these strains were checked, and the ones with higher ability 

to produce organic acid and gibberellins’ were selected, identified and employed 

for inoculation on plant experiment. 

 

Screening for gibberellins (GAs) detection 

 

The bioassay of the isolated microorganism to detect the absence or presence of 

GA was performed through the application of culture on a dwarf mutant waito-C 
that lacks gibberellins. For these, rice seeds were surface sterilized with 2.5% 

sodium hypochlorite for 30 min, rinsed with distilled water and incubated for 24 h 

with 20-ppm uni- conazole to obtain equally germinated seeds. After attaining two 
leaves stage, the CF 100 ul of MU2 was applied in rice seedlings. After 10 days, 

the rice shoot length, shoot fresh weight and shoot dry weight was recorded. 

 

Organic acids quantification 

 

The method described by Kang et al., (2015) was followed to quantify the organic 

acid. Briefly, bacterial culture was filtered through 0.22 μm Millipore filter and 10 

μL of filtrates were injected to HPLC (Model: Waters 600E) equipped with a 

Refractive Index Detector (Model: Waters 410). Column: RSpak KC-811(8.0 x 

300mm), Eluent: 0.1% H3PO4/H2O, Temperature: 40℃ and Flow rate: 1.0 ml/min. 

 

Extraction and quantification of gibberellins produced by bacteria 

 

A protocol described by (Lee et al., 2015) was followed to extract and quantify 
GA content in bacterial culture. Briefly, an isolated bacterial strain MU2 was 

cultured in LB media in a shaking incubator for 5 days at 30℃. The culture was 
centrifuged and the filtrate (100 ml) was analyzed using GA extraction protocol 

(Lee et al. 1998). Three major ions of the supplemented [2H
2] GA internal 

standards (obtained from Prof. Lewis N. Mander, Australian National University, 

Canberra, Australia) and the exogenous GA were monitored simultaneously. 

Retention time was determined by using the hydrocarbon standards to calculate the 
Kovats retention indices value (Gaskin and MacMillan 1991). GAs was detected 

by using gas chromatography with a mass spectrometer (6890N network GC 

system, and 5973 network mass selective detector; Agilent Technologies). 

 

Identification and phylogenetic analysis of bacterial isolate MU2 

 

An isolated bacterial strain MU2 was identified on the basis of partial 16S 

ribosomal rDNA sequence. The chromosomal DNA was isolated and the 27F 

primer (5'-AGAGTTTGATC(AC)TGGCTCAG-3') and 1492R primer (5'-CGG 
(CT) TACCTTGTTACGACTT-3') were used for PCR amplification. The BLAST 

search program (http://www.ncbi.nlm.nih.gov/BLAST/) was used to find the 

nucleotide sequence homology of this bacterial isolate. The closely related 
nucleotide sequences were aligned by ClustalW and MEGA (version 6.0) software, 

and the neighbor-joining tree was generated. Bootstrap (1000 replications) was 

used for statistical support for the nodes in the phylogenetic tree. 
 

Experiment location, method, and design 

 

The experiment was conducted at the green house of Kyungpook National 

Universtiy, Daegu, Korea located at longitude of 128.587655° E and latitude of 

35.857655° N. The bacterial culture of MU2 was incubated for 5 days at 30 °C on 

a shaking incubator at 200 rpm in broth medium. The bacterial suspension was 

diluted in sterile distilled water to a final concentration of 108 CFU/ml. Chinese 

cabbage and lettuce seeds were purchased from Seminis Korea Co. (Korea), 
surface sterilized with sodium hypochlorite (5%) for 10 min, and thoroughly rinsed 

with autoclaved double distilled water (DDW). Seeds were sown in plastic tray 
containing horticultural soil and grown under the controlled greenhouse conditions 

(30±2°C). The composition of horticultural soil was as follows: peat moss (13–

18%), perlite (7–11%), coco-peat (63–68%) and zeolite (6–8%), with macro-
nutrients being NH4

+~90 mg/kg; NO3
-~205 mg/kg; P2O5~350 mg/kg and K2O~100 

mg/kg (autoclaved three times). Two-week-old Chinese cabbage and lettuce 

seedlings (50 per treatments) were transplanted to the pot and treated with 5 ml of 
bacterial culture 100 ppm. After 10 days, the growth attributes were recorded.  

 

 Statistical analysis 

 

The present study was conducted in a completely randomized design (CRD) and 

the experiment was designed as Control and Treatment (P. koreensis) for both the 
crops, in which each treatment had 10 replication. The data were statistically 

analyzed with SAS 9.4 software (SAS Institute, Cary NC, USA). The mean values 

among treatments were compared  using Duncan's multiple range test (DMRT) at 
p ≤ 0.05. 

  

RESULTS AND DISCUSSION 

 

Isolation, selection, and identification 

 

Through screening of soil sample from diverse agricultural land, various PGPR 

were isolated. The isolates were investigated based on the preliminary test of 

secondary metabolites production. The isolate that had the innate ability to produce 
the organic acid, and that promoted the growth of GA-deficient dwarf rice mutant 

Waito-C was selected for further investigation. The phylogenetic analysis revealed 

that the sequence obtained by 16s rDNA represent the microbes Pseudomonas 
koreensis. The isolate was registered in an NCBI with an accession number 

MU2KP 676116. The phylogenetic tree was constructed with gene sequence 
obtained in Blast Search Mega 6. Version(1000 bootstrap) Figure 1. 

 

 
Figure 1 Phylogenetic tree based on the sequence obtained from 27F and 1492R 
primers of 16S rDNA of MU2(KP676116) and those of related bacteria. 

Percentage confidence levels generated from 1000 bootstrap trees are indicated at 

each node.  
 

Gibberellins (GAs) detection  

 
The production of gibberellins through bacteria is widely reported (Hedden and 

Sponsel, 2015). The gibberellin acts as a signal molecule and also promotes plant 

growth (Bottini et al., 2004). In our study, the inoculation of the Pseudomonas 
koreensis MU2 culture significantly increased the shoot length by 27%, shoot fresh 

weight  by 29% and shoot dry weight by 33% of GA deficient mutant waito-c 
(Table 1). These results confirmed the ability of the microbes to produce GA. 

 

Table 1 Effect of Pseudomonas koreensis on plant growth promoting 
characteristics of gibberellins deficient dwarf rice mutant waito-c. 

 
Shoot Length 

(cm) 

Shoot Fresh 

Weight (g) 

Shoot Dry Weight 

(g) 

Control 5.76±0.32b 0.54±0.03b 0.060±0.006b 

MU2 7.32±0.33a 0.70±0.07a 0.082±0.005a 

Results are expressed as mean ±SD (n=10) and significantly different at a p <0.05. Means 

sharing different superscript letter in a column indicate significant difference determined by 

DMRT (p ≤ 0.05)  

 

Gibberellins (GAs) quantification and analysis: 

 

In the present study, it was revealed that the bacteria were able to produce the 

gibberelins GA1 (1.92 ng/100 mL) and GA3 (9.82 ng/100 mL), in which GA3 was 

found significantly higher as compared to GA1 (Figure 2). Moreover, our results 
are consistent with the evidence that bacteria like Azospirillum brasilense, 

Azospirillum lipoferum, Acetobacter diazotropicus, Bacillus pumilus, Bacillus 

licheniformis are able to produce GA1 and GA3 (MacMillan, 2001).  

http://www.ncbi.nlm.nih.gov/BLAST/
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Figure 2 Quantification of gibberellins (GAs) content produced by Pseudomonas 

koreensis MU2 on the cultural filtrate. Bars represent means ±SD (n=3). Means 
followed by different letter indicate significant difference determined by DMRT 
(p ≤ 0.05) 

Organic acid analysis 

Pseudomonas spp have been widely reported for their organic acid production 

ability (Berg, 2009; Rodrı́guez and Fraga, 1999; Vyas and Gulati, 2009). Our 

study revealed that the Pseudomonas koreensis could produce mallic acid (112.6 
ug/mL), citric acid (308.4 ug/mL) , and tartaric acid (87.6 ug/mL) among which 

citric acid was found significantly higher as compared to malic acid and tartaric 

acid (Figure 3). It has been reported that numerous species of PGPR have the 
ability to produce organic acids (Berg, 2009; Compant et al., 2005). These 

organic acids include citric acid, malic acid, oxalic acid, fumaric acid, acetic acid, 

butyric acid, succinic acid,  valeric acid, piscidic acid, glycolic acid, formic acid, 
lactic acid, aconitic acid, pyruvic acid, malonic acid, tetronic acid, aldonic acid, 

glutaric acid, and erythronic acid (Ahemad and Kibret, 2014; Dakora and 

Phillips, 2002).  
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Figure 3 Quantification of Organic acid content produced by Pseudomonas 

koreensis MU2 on the cultural filtrate. Bars represent means ±SD (n=3). Means 

followed by different letter indicate significant difference determined by DMRT 
(p ≤ 0.05) 

Effect of Bacterial culture on plant growth promoting attributes 

 

The Pseudomonas spp. exert a wide range of beneficial characteristics like high-
stress tolerance ability, detoxification of inorganic pollutants through 

immobilization/mobilization/oxidation/reduction/bioaccumulation and 

degradation of the xenobiotic compound and root colonization (Rajkumar et al., 

2017). In our study, the inoculation of P. koreensis significantly increased the shoot 

length, root length, fresh biomass, dry biomass, and chlorophyll content of both 

the crops ( lettuce and Chinese cabbage) (Table 2). It have been reported that the 
Pseudomonas improved yield in wheat (Weller and Cook, 1986) and promoted 

growth in radish and potato (Kloepper et al., 1980). Pseudomonas (BA-8) 
improved the yield of sugarbeet (Çakmakçı et al., 2001). Similarly, the 

pseudomonas florescens improved growth in various crops like potato (Burr et al., 

1978), Winter wheat (Weller and Cook, 1986), Tomato (Gagné et al., 1993),  
Highlush Blueberry(de Silva et al., 2000). Moreover, Pseudomonas spp. improved 

growth in lettuce, maize, barley, and wheat (Lucy et al., 2004). Furthermore, our 

results are strongly agreed by previous reports (Ullah et al., 2014 ;Kang et al., 

2012; Joo et al., 2005;Joo et al., 2004), where gibberellin producing 

microorganism promoted growth in various plants.  

Microorganisms are considered as the main source of organic acid content in soil 
(Adeleke et al., 2017). A Pseudomonas excrete a huge amount of organic acids 

which dissolve in the rhizosphere that solubilizes the insoluble phosphate and make 

available for plant uptake (Rajkumar et al., 2017). Organic acids play a significant 
role in mineralization and metal detoxification (Adeleke et al., 2017)  as well as 

nutrient assimilation (Kashyap et al., 2017). Moreover, organic acid produced by 

Pseudomonas spp is involved in organic matter degradation through hydrolysis, 
acidogenesis, acetogenesis and methanogenesis (Adeleke et al., 2017). The 

organic acid produced by P. koreensis might have played role in metal 

solubilization, organic matter degradation, and nutrient  assimilation to promote 
the growth in the plant.  

Up to date, altogether 136 kinds of GAs have been reported to be isolated from 

bacteria, fungi and plants, out of which only GA1, GA3 and GA4, have been 
reported to be involved in the regulation of plant physiology and growth promotion 

(Bottini et al., 2004). As our results indicate that MU2 could produce the 

biologically active gibberelins GA1 and GA3, and organic acids like malic acid, 
citric acid, and tartaric acid, these secondary metabolites produced by microbes 

might have played a key role in the growth promotion of dwarf mutant Waito-C, 

Chinese cabbage and lettuce. Thus, Pseudomonas koreensis MU2 might be one of 
the efficient strains for commercial biofertilizer production in order to implement 

organic production. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

Table 2 Effect of Pseudomonas korensis MU2 on growth promoting attributes on chinese cabbage and lettuce 

Treatments 
Shoot length 

(cm/plant) 

Root length 

(cm/plant) 

Fresh biomass 

(g/plant) 

Dry biomass 

(g/plant) 

Chlorophyll 

(SPAD) 

Chinese cabbage 

Control 11.28±0.66b 10.10±0.34 b 4.02±0.16 b 0.41±0.01 b 31.88±1.45 a 

P. koreensis MU2 12.82±0.38 a 10.96±0.59 a 4.62±0.43 a 0.47±0.06 a 32.28±1.49 a 

 

Lettuce 

Control 16.82±1.09 b 16.46±0.57 b 6.06±0.74 b 0.57±0.10 b 30.68±1.06 a 

P. koreensis MU2 18.84±1.24 a 17.66±0.63 a 7.06±1.09 a 0.64±0.11 a 32.76±2.16 a 
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Results are expressed as mean ±SD (n=10). Means sharing different superscript letter in a column indicate significant difference determined by DMRT (p ≤ 0.05) 
CONCLUSION 

 

The anthropogenic activities leading to global climate change have been a serious 
problem in the current agricultural practice. Moreover, excessive use of pesticides 

and fertilizers has an adverse effect on the human as well as the ecological cycle. 

Application of plant growth promoting bacteria is considered an environmental 
friendly approach for sustainable and healthy production.  The endogenous 

hormones and organic acid production by microbes play a key role in plant growth 

and development. In the present study, Pseudomonas koreensis MU2 was able to 
produce the biologically active gibberelline and organic acids and promoted the  

plant growth. Thus, it might be a cost-effective biofetilizer for the healthy growth 
and  quality yield. Furthermore, our findings could lead to a better understanding 

of the plant-microbe interaction for future studies. 
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