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INTRODUCTION 

 

Zea mays L or maize (corn) is a very popular crop plant that thrives excellently in 

the tropical and warm sub-tropical Africa, Latin America and Asia, where it is 
primarily used as human food and animal feed owing to its large carbohydrate 

content (Olaniyan and Lucas, 2004). On a global scale, corn ranks third 
among the cereals in terms of earnings upon investment (Akongwubel et 

al., 2012). On the African continent, Nigeria is only second to South 

Africa in production but placed eleventh in terms of corn yield 
(FAOSTAT, 2014). 

Corn and/or its products have found wide applications in households and 

industries including food, dairy, brewery and distillery (Undie et al., 2012). In 
Southern Nigeria, corn is mostly consumed directly as snack, in boiled or roasted 

form, or processed into flour and consumed in a variety of forms (Akongwubel 

et al., 2012).   
The dominant factors that influence corn yield have been identified as soil type, 

climate, soil health and fertility, corn variety and cropping method (Akongwubel 

et al., 2012; Undie et al., 2012). As a hardy plant, corn has the ability to grow on 
a vast array of soils, but best yield is reported in rich loamy or sandy-loamy soils 

under salutary climatic conditions (Undie et al., 2012). Nigeria has an abundance 

of these soil types with adequate health and fertility for high yield. However, pH, 
soil organic carbon, phosphorus, nitrogen, micronutrients and soil moisture levels 

influence soil fertility owing to changes in their status arising, mostly, from 

anthropogenic pollution from industries (Zerrouqi et al., 2008; Gordon et al., 

2013). 

Generally, industries are categorized as high-polluting, less-polluting and non-

polluting by the ministries of environment and forest, on the basis of their 
capacities to pollute the environment. Cement industries are regarded as high-

polluting, especially with regard to particulate emissions considering their role in 

pollution hazards and environmental imbalance. Their emissions pollute the 
environment in the form of dusts as they escape during factory processing 

(Kulandaivel et al., 2015). 

Cement manufacturing releases alkaline particulate gaseous pollutants and other 
particles into the soil (Hemida, 2005; Bilen, 2010). Their direct effects have 

been reported to include ecosystem alkalination and undesirable soil 
physicochemical composition and biological activity (Nowak et al., 2003; Ocak 

et al., 2004). Documented reports show that cement dust trigger considerable pH 

changes arising from inputs of oxides like Cao, Fe2O3, SiO2, Al2O3, MgO, K2O, 
Na2O and SO3 and accumulation of toxic metals like hexavalent chromium, 

nickel, cadmium and lead (Saddique, 2014). Mediation of metal toxicity to soil 
microorganisms and their metabolism by pH occasioned on the availability of 

suitable ligands has been copiously documented (Ekpenyong and Antai, 

2007a,b; Ekpenyong et al., 2007; Hagmann et al., 2015). The consequences are 
reductive changes in microbial quality content and their biochemical and/or 

physiological activities (McCarthy et al., 2003; Biyik et al., 2005). Microbial 

biomass and soil enzyme activities are therefore reliable soil fertility indices 
since their responses to variations in soil properties occasioned on pollutant 

presence are rapid and measureable (Bilen, 2010; Panettieri et al., 2013). Their 

composition and activities also adequately reflect biological and biogeochemical 
changes brought about by the pollution (Bayhan et al., 2002; Bacmaga et al., 

2015). 

In the ancient city of Calabar, Nigeria, where a cement factory is located near 
agricultural farmlands, surrounding soils have been reported to yield poorly, even 

after fertilizer application. This has sparked off youth restiveness in the area with 

frequent kidnap of Health and Tertiary Institution workers. The present study 
comparatively investigated the fertility status of farmlands surrounding the 

cement factory, pristine soils and polluted soils amended with fertilizer. 

Multivariate statistical tools, namely, correlation analysis (CA), principal 
component analysis (PCA), agglomerative hierarchical cluster analysis (AHCA) 

and multivariate analysis of co-variance (MANCOVA) were used. These 

approaches have earlier been reported as successful and therefore reliable in 
studies on fertility parameters of humic soil cultivated with coffee (Silva and 

Lima, 2012), trace metal contamination of sediments (Benson et al., 2016), soil 

fertility parameters around nuclear power plant (Shinde et al., 2016), 
determination of soil pedoenvironmental indicators (Oliveira et al., 2017) and 

soil fertility relationships for predicting environmental persistence of pollutants 

(Katseanes et al., 2017). 
 

This study investigated the impact of cement-dust pollution on the fertility status of agricultural soils to ascertain their health and 

suitability for cropping. Relevant soil nutrients and enzyme activities were determined from 12 control soil, 12 NPK-treated polluted 

soil and 12 un-amended polluted soil samples, using standard soil analytical and biochemical procedures. Soil microbial biomass-carbon 

was quantified by chloroform-fumigation-extraction (CFE) method. Cultivable aerobic bacterial count was determined on Tryptic Soy 

Agar (TSA) while cultivable fungal quantitation was performed on Czapek-Dox agar. Corn (Zea mays) yield served to evaluate 

pollutant effect on tested parameters. Principal component analysis (PCA) extracted two components, PC1 and PC2, from nine studied 

dependent variables (DVs) which explained 68.33% variability about the data. Number and membership of extracted components were 

confirmed by two clusters obtained by agglomerative hierarchical cluster analysis (AHCA). Multivariate analysis of covariance revealed 

significant effect of soil type on the combined DVs when the effect of the covariate (planting period) was controlled. One-way analysis 

of covariance (one-way ANCOVA) revealed non-significant effect of planting period but a significant main effect of soil type on corn 

yield when controlling for the effect of the covariate. Relative to control soil, per cent loss in corn yield was 55.69% in cement dust-

polluted soil but reduced to 36.07% in polluted soils treated with NPK. The research findings have shown that cement dust pollution 

significantly reduced corn yield and the stress may persist in agricultural soils amended with fertilizer. 
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MATERIALS AND METHODS 

   

Area of study 

 
Calabar soils are characteristically described as sandy-loamy (Ibanga et al., 

1989; Akpan-Idiok and Ogbaji, 2013). The area is a tropical rainforest (Akpan 

et al., 2017), with average rainfall almost all year round but with sufficient 
sunlight that makes corn planting possible three times per year; March to June 

(early-season), May to September (mid-season) and September to January (late-

season corn)(Undie et al., 2012). The study area was United Cement Company 
Plant located within Latitude 40°53’ and 50°05’N and Longitude 80°15’ to 

80°27’E of Calabar, Cross River State, at the limestone belt of Mfamosing and 
surrounding fields in Akamkpa Local Government Area (2 km east and west ends 

from the factory). Total area of study was 1 km2 including the factory. The 

southern end of the factory is bordered by the Akpayafe River while the northern 
end accommodates roads and residential areas, leaving the western and eastern 

borders for agricultural practices. 

 

Study design and sampling 

 

A total of 108 samples were collected from 3 types of soil over 3 planting 

periods; 36 samples per soil type. The cement-dust polluted area was divided into 

24 acres (24 x 4046.86 m2); 12 acres (6 west and 6 east of factory) were tilled to a 

depth of 30 cm, fertilized with 2 pounds of NPK/acre (16:16:8) and allowed to 
fallow for two weeks. This was used as polluted but treated soil (POT). The 

remaining 12 acres were left un-amended and described as polluted (POL) soil 

samples. The control soil (CON), located at the Cross River University of 
Technology research garden on 5º15”N; 8º22”E at approximately 25 kilometers 

from the factory, was also divided into 12 acres. For each planting period, 4 

replicate acres per soil type were sampled by means of a hand auger from the first 
20 cm depth of the different soil types after removing vegetation. Three sub-

samples were collected from each acre diagonally positioned 500 m one from 

another into sterile wide-mouth sampling bottles. The bottles were properly 
labeled, placed in ice-packed coolers and transported to the laboratory within 1 

hour of collection for preparation and analyses. 

 

Sample preparation 

 

Broken bottles, sticks, polyethylene substances and other unwanted materials 

were carefully separated from each of the 3 sub-samples and samples 

homogenized by means of a laboratory homogenizer (SAMRO-SRH50-80, 

China). The sub-samples were pooled to obtain 4 composite samples per acre per 
soil type per planting period. Required amount of samples were weighed, by 

means of a digital balance (METTLER-TOLEDO), from the composite sample 

for the various analyses that followed. For analyses that did not require much 
urgency, samples were preserved in the refrigerator at 4ºC until required. 

Dilutions of soil samples were prepared for microbial analyses. All analyses were 

initiated within 16 h following collection of samples. 
 

Determination of soil microbial biomass-carbon 

 
To estimate the amount of carbon trapped in microbial biomass in soil samples, 

the method of fumigation and subsequent extraction with chloroform, reputed as 

standard method for microbial biomass determination (Vance et al., 1987; Bailey 

et al., 2002), was employed. Briefly, 5 g of each of chloroform-exposed and 

unexposed subsamples were transferred into 70 mL glass (Pyrex) tubes followed 

by addition of 40 mL potassium sulfate (0.5M K2SO4) solution to each sample. 

Subsequently, 0.5 mL ethanol-free chloroform was added to one sub-sample and 

tubes covered with chloroform-resistant caps. The tubes were shaken at 150 rpm 

for 4 h and then left for 10 min. The top 30 mL of the soil extracts were decanted 
and filtered. The filtrate was collected in 50 mL centrifuge tubes and forcibly 

injected with air for 30 min (to rid extracts of chloroform) using long spinal tap 

needles. Potassium sulfate (0.5 M K2SO4) served as blank. The control and 
chloroform-exposed extracts were analyzed for total dissolved C using a 

persulfate digestion technique. Dissolved C concentration in the K2SO4 blanks 
(no soil added) with and without chloroform were subtracted from the extract 

concentrations of the chloroform-exposed and the control samples. Amount of 

biomass carbon extracted was determined as the difference in total dissolved 
carbon between the chloroform-treated sub-sample and its comparable control 

sub-sample. 

Total Microbial Biomass C (extractable + non-extractable biomass) was 
determined using equation; 

 

𝑇𝑜𝑡𝑎𝑙 𝑀𝑖𝑐𝑟𝑜𝑏𝑖𝑎𝑙 𝐵𝑖𝑜𝑚𝑎𝑠𝑠 (𝑇𝑀𝐵) = 2.68𝑉 − 44.1             𝐸𝑞𝑛. 1  
(Vance et al., 1987) 

 
where V represents net flush of carbon from fumigated and un-fumigated K2SO4 

(0.5 M, pH 7.0)-extracted soils. Results were expressed as microgram chloroform 

extractable biomass C/gram of dry soil. 
 

Enumeration of cultivable aerobic bacteria 

 

Three appropriate dilutions from each of a 10-fold serially-diluted sample were 

plated on tryptic soy agar in triplicates by the pour plating method. Plates were 
incubated for 36 h at 28 ± 2°C. Bacterial enumerations were performed by means 

of colony counter (Scan 1200 Colony counter, USA) (Ekpenyong et al., 2007b). 

Mean counts presented in standard forms were subsequently transformed to log10 
values and used for analysis. 

 

Enumeration of cultivable fungi 

 

Total fungi comprising yeasts and molds were enumerated on Czapek-Dox agar 
(CDA) and triplicate plates incubated at 30ºC for 48-72 h. Discrete colonies of 

yeasts and molds were enumerated and expressed as described for bacteria. 

Attention was paid to the ratio of yeasts to molds per plate and per sample. 
 

Determination of soil enzymatic activities 

 
Dehydrogenase activity evaluation followed the protocol of Casida et al. (1964) 

using soil amended with CaCO3. The activity was based on the conversion of 2, 

3, 5- triphenyltetrazolium chloride substrate to the reddish-colored water-

insoluble formazan products whose intensities were measured 

spectrophotometrically at 485 nm wavelength with methanol as blank. Results 

obtained were compared with triphenyl formazan standards. 
Alkaline phosphatase activity was evaluated using acetate buffer at pH 9.0. 

Reactions were stopped using a combination of 0.5 mol/L CaCl2 and 0.5 mol/L 

NaOH. For one hour, enzyme activity reactions were held in a water bath at 37°C 
and cleavage product identified at a wavelength of 410 nm (Alef et al., 1998). 

β-glucosidase activity was evaluated by the adding p-nitrophenyl-β-D-

glucopyranoside to 1 g of soil (Eivazi and Tabatabai, 1988). The reaction was 
stopped by the addition of 0.02 mol/L Tris at pH 12.0. The cleavage product, p-

nitrophenol glucoside was detected and quantified using UV-Vis 

spectrophotometer (Perkin-Elmer Lambda 25, MA-USA) at 464 nm wavelength. 
 

Physicochemical analyses of samples 

 
Soil pH was determined by potentiometry using 1 M aqueous solution of 

potassium chloride (KCl). Total nitrogen (TN) was determined as described by 

Janssen (2003). Available phosphorus (AvP) was determined by the colorimetric 

ascorbic acid method (Olsen, 1954; Ichikogu, 2012) while the procedure of wet 

oxidation was followed to estimate soil organic carbon (SOC), using chromic 

acid as oxidant (McLeod, 1973). 
 

Validation experiment for determination of corn-crop yield 

 
Maize (Zea mays L.), otherwise called corn, was planted on 12 acres (12 x 

4046.86 m2) per planting period on each of polluted soil (POL), treated-polluted 

soil (POT) and the control soil (CON). Each cultivated acre contained 40 ridges 
(rows) and each ridge had 500 corn stands. A ridge was separated from the next 

by a distance of 85 cm while corn stands were separated one from another by a 

distance of 25 cm. Seeds were planted during the 3 planting periods of October 
(1), March (2) and July (3), and were harvested 3 months later. Corn yields, 

expressed as bushels/acre, were determined using the equation below and 

compared among the three types of soil using one-way analysis of covariance 
(ANCOVA). 

 

𝑌𝑖𝑒𝑙𝑑 (𝑏𝑢𝑠ℎ𝑒𝑙𝑠 𝑎𝑐𝑟𝑒−1) = 𝑘𝑒𝑟𝑛𝑒𝑙𝑠 𝑒𝑎𝑟−1 ×
𝑒𝑎𝑟𝑠 𝑎𝑐𝑟𝑒−1

𝑘𝑒𝑟𝑛𝑒𝑙𝑠 𝑏𝑢𝑠ℎ𝑒𝑙−1
                 𝐸𝑞𝑛. 2 

 

Statistical analyses 

 

Data was first subjected to Pearson bivariate correlation to establish data 

appropriateness for multivariate statistics. Over-correlated data were removed 
and principal component analysis (PCA) performed on remaining data. Results 

from PCA were confirmed by a dendrogram obtained by Euclidean distance of 

Ward linkage method of an agglomerative hierarchical cluster analysis (AHCA). 
Impact of cement-dust on selected outcome variables was evaluated by 

multivariate and univariate analyses of covariance (one-way MANCOVA and 

one-way ANCOVA respectively) of corn yield data. SPSS version 20.0 (IBM, 
USA) was employed to conduct all the statistical analyses. 

 

RESULTS 

 

Pearson bivariate correlations of dependent variables 

 

Results of bivariate correlations computed to determine the appropriateness or 

otherwise of multivariate statistics of data are presented in Table 1. The results 

showed that soil organic carbon (SOC) had high significant correlation (p < .01) 
with all other 8 dependent variables except a moderately significant negative 

correlation (r = -.332; p = .048 < .05) with β-glucosidase activity (BGA). Total 
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nitrogen (TN) had high significant correlations with other test variables except 
that its correlations with available phosphorus (AvP: r = .353, p = .034 < .05) and 

BGA (r = -.332, p = .023 < .05) were moderate. The weak negative correlation of 

available phosphorus (AvP) with BGA was not significant (r = -.310, p = .066 > 
.05); however, the variable had moderate correlations (p < .05) with total nitrogen 

(TN) and fungal count (LOG10FC) but its relationship with the remaining 

variables were significantly high (p < .01). 
Results also showed weak relationships of dehydrogenase activity (DHA) with 

alkaline phosphatase activity (ALPA: r = .227, p = .101 > .05) and β-glucosidase 

activity (BGA: r = .328, p = .051 > .050). Alkaline phosphatase activity (ALPA) 
and β-glucosidase activity (BGA), in turn, showed respectively, weak correlation 

with fungal count; LOG10FC: r = -.328, p = .051 > .050 and r = -.248, p = .144 > 
.050. Cultivable aerobic bacterial population (LOG10BC) strongly correlated 

with LOG10FC and total soil microbial biomass-carbon (SMB-C), however, the 

relationship with LOG10FC was negative while that with SMB-C was positive. 
 

Principal component analysis (PCA) of interrelationships among soil fertility 

parameters 

 

Another test of appropriateness of PCA was based on test results of sampling 

adequacy using Kaiser-Meyer-Olkin (KMO) as well as that of sphericity using 

Bartlett’s test. A KMO of .60 and above with a significant (p < .05) sphericity 

test result suggest that data was adequate to conduct a PCA. Our results revealed 

a KMO of .765 and a significant (p < .0005) sphericity test suggesting that the 
assumption of an identity matrix in the data should be rejected and a PCA 

accordingly performed to determine the interrelationships between and among 

fertility parameters in the various soils studied. 
The “Total Variance Explained” table of the PCA is presented in Table 2 to show 

the importance of each of the 9 principal components. The table revealed that 

only two components had initial eigenvalues ≥1.0 suggesting that the PCA 
constructed two principal components from the survey items. The table showed a 

cumulative explained variance of 68.33% with principal component 1 (PC1) 

contributing 57.12% and PC2 only 11.21%. The number of extracted components 

is also presented as a Scree plot in Figure 1 to show the elbow (break) point of 
the plot indicating two extracted principal components. 

The two components were subjected to matrix rotation using Varimax with 

Kaiser Normalization. The resultant rotated matrix revealed that LOG10BC (r = 
.766), SMB-C (r = .754) and ALPA (r = .923) all had high positive loadings on 

PC1 and respectively low negative loadings (r = .355), (r = -.344), (r = -.107) on 

PC2.  Fungal count (LOG10FC) had a high positive loading (r = .863) on PC2 
but low negative loading (r = -.185) on PC1 while DHA had a high negative 

loading (r = -.830) on PC2 but a low positive one (r = .230) on PC1. The factor 

loadings in rotated space are presented as Figure 2. The angles of rotation were 
determined by treating the correlation coefficients, r of the two principal 

components as cosines of angles. Since the correlation coefficient for PC1 was 
.824, the angle of rotation was 34.51º and that for PC2 (r = .566) was 55.53º. 

  

Cluster analysis of soil fertility parameters 

 

The results of principal component analysis (PCA) were confirmed with 

hierarchical cluster analysis (HCA) using Euclidean distance of a Ward linkage 
of an agglomerative schedule. The proximity matrix, just like the correlation 

matrix in principal component analysis (PCA) showed that Euclidean distance 

between soil organic carbon and total nitrogen (SOC-TN), soil organic carbon 

and available phosphorus (SOC-AvP), soil organic carbon and fungal count 

(SOC-LOG10FC) were respectively 4.549, 4.460 and 5.991. These results, 

presented as a dendrogram in Figure 3, therefore revealed two hierarchical 
clusters of variables. Cluster 1 comprised SOC, TN, AvP and LOG10FC with 

low (4.00 - 6.00) Euclidean distance between any pair. Cluster 2 consisted of 

alkaline phosphatase activity (ALPA), β-glucosidase activity (BGA), 
dehydrogenase activity (DHA), bacterial population (LOG10BC) and soil 

microbial biomass-carbon (SMB-C) with high Euclidean distance between any 

pair (6.00 - 12.00). 
 

 

 

 

 

Table 1 Pearson bivariate correlations of dependent variables 

 
SOC TN AvP DHA ALPA BGA LOG10 BC LOG10 FC SMB-C 

SOC Correlation 1         

Sig.       .   

TN Correlation .704** 1        
Sig. .000  .    .   

AvP Correlation .716** .353* 1     .  

Sig. .000 .034        
DHA Correlation -.517** -.500** -.486** 1      

Sig. .001 .002 .003       

ALPA Correlation -.733** -.596** -.685** .277 1     
Sig. .000 .000 .000 .101      

BGA Correlation -.332* -.378* -.310 .328 .486** 1    

Sig. .048 .023 .066 .051 .003     
LOG10 BC Correlation -.589** -.665** -.569** .440** .691** .436** 1   

Sig. .000 .000 .000 .007 .000 .008    

LOG10 FC Correlation .487** .573** .377* -.584** -.328 -.248 -.461** 1  
Sig. .003 .000 .023 .000 .051 .144 .005   

SMB-C Correlation -.546** -.748** -.528** .450** .663** .403* .714** -.385* 1 

Sig. .001 .000 .001 .006 .000 .015 .000 .020  

Legend: ** Significance level, p = 0.01, * Significance level, p = 0.05,  SOC-Soil organic carbon, TN-Total nitrogen, AvP-Available 

phosphorus, DHA-Dehydrogenase activity, ALPA-Alkaline phosphatase activity, BGA-β-glucosidase activity, LOG10BC-LOG 10 

Bacterial count, LOG10FC-LOG 10 Fungal count, SMB-C-Soil microbial biomass-carbon 
 

Table 2 Total explainable variance of a principal component analysis showing two extracted components 

Component Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative % 

1 5.141 57.117 57.117 5.141 57.117 57.117 3.817 42.408 42.408 

2 1.009 11.214 68.331 1.009 11.214 68.331 2.333 25.923 68.331 

3 .794 8.826 77.156       

4 .706 7.846 85.002       

5 .465 5.164 90.166       

6 .397 4.412 94.578       

7 .261 2.897 97.475       

8 .155 1.719 99.195       

9 .072 .805 100.000       

Extraction Method: Principal Component Analysis. 
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Figure 1 Scree plot of Eigenvalues against component number showing the 

elbow point for two principal components 

 
Figure 2 Extracted principal components of dependent variables in rotated 
space

 
 

Figure 3 Dendrogram of a Ward linkage of an agglomeration schedule of a 
hierarchical cluster analysis (HCA) showing two variable clusters 

 

 

Multivariate analysis of effect of soil type and planting period on fertility 

variables 

 

Multivariate analysis of covariance (one-way MANCOVA) was adopted to 
ascertain the main effect of soil type on the nine moderately correlated dependent 

variables (DVs) when controlling for planting period as covariate. The 

homogeneity assumption given by the Box’s test was significant, F = 1.692, p < 
.0005, indicating violation of the assumption. However, the assumption of 

homogeneity test for equality of error variance was met (Table 3) by the non-

significant (p > .05) Levene’s test for all 9 DVs. 
Table 4 presents the four different multivariate tests conducted to explain the 

effect of soil type on the response variables when controlling for the effect of the 
covariate (planting period). The table showed that all four multivariate tests for 

the covariate were significant (p < .0005). Because the Box M test of 

homogeneity assumption was violated, we reported the result from the very 
robust Pillai’s Trace test. The results showed a statistically significant effect of 

the covariate on the DVs in combination: planting period, F (9, 24) = 48.36, p < 

.0005; Pillai’s Trace = .948, partial ƞ2 = .948 and a statistically significant main 
effect of the categorical predictor variable on the DVs in combination when 

controlling for the covariate: soil type, F (18, 50) = 31.12, p < .0005; Pillai’s 

Trace = 1.84, partial ƞ2 = .918. 

An extract of the tests of between-subjects effect (Table 5) results revealed that 

the covariate effects were not significant (p > .05) for available phosphorus 

(Avp), dehydrogenase activity (DHA), β-glucosidase activity (BGA) and fungal 
count (LOG10FC). However, for soil organic carbon (SOC), total nitrogen (TN), 

alkaline phosphatase activity (ALPA), bacterial count (LOG10BC) and soil 

microbial biomass-carbon (SMB-C), there were significant main effects among 
the independent levels for the covariate. Furthermore, Bonferoni’s post hoc test 

was employed to separate significant means. The test revealed that significant 

difference in mean SOC levels existed between control soil (CON) and untreated 
polluted soil (POL) as well as between NKP-treated polluted soil (POT) and POL 

but not between CON and POT (p = .448 > .05) as can be seen in Figure 4a. 

Mean total nitrogen (TN) was only significantly different between CON and POL 
(p = .02 < .05). The mean difference in TN between CON and POT (p = .761 > 

.05) and POT and POL (p = .276 > .05) was not statistically significant (Figure 

4b). Mean alkaline phosphatase activity (ALPA) was significantly different 
between all soil type pairs (Figure 5a). Bonferroni multiple comparison result 

also showed that mean bacterial population (LOG10BC) (Figure 6b) differed 

significantly between CON and POL and between CON and POT but not 

between POT and POL. There was significant nean difference in soil microbial 

biomass-carbon (SMB-C) between CON and POL (p = .011 < .05) (Figure 6a). 

However, no significant difference existed between CON and POT (p = .062 > 
.05) or between POT and POL (p = 1.000 > .05). 

The tests of between-subjects effect for the main effect revealed that only 

dehydrogenase activity (DHA) (Figure 5c) and fungal count (LOG10FC) (Figure 
6c) were not significantly affected (p > .05) by soil type. Bonferroni multiple 

comparisons showed non-significant mean difference in available phosphorus 

(AvP) between CON and POT but significant mean difference existed between 
POT and POL and between CON and POL (Figure 4c). Mean β-glucosidase 

activity (BGA) (Figure 5b) differed significantly between CON and POL and 

between CON and POT but not between POT and POL (p > .05). 
 

Evaluation of cement dust pollution effect on corn yield 

 
Analysis of covariance (one-way ANCOVA) was used to analyze corn yield data 

in cement dust polluted (POL), NPK-amended (POT) and control (CON) 

agricultural soils. Homogeneity assumption of the model was met by non-

significant Levene’s test result. The ANCOVA result, presented as Table 6 

revealed that corn yield did not differ significantly with the covariate (planting 

period) but with soil type, F (2, 32) = 21.54, p < .0005; model adjusted r2 = .534. 
The control soil (CON) had a mean corn yield of 7.89 bushels/acre which was 

higher than those from NPK-amended polluted soil (POT-5.04 bushels/acre) and 

the un-amended polluted soil (POL-3.50 bushels/acre) as illustrated in Figure 7. 
Bonferroni multiple comparisons showed that mean difference in corn yield 

between CON and POL soils as well as that between CON and POT soils were 
significant. However, mean difference between POT and POL was not 

statistically significant (p = .089 > .05). We calculated loss in corn yield in 

relation to control soil using the equation: 𝑌𝑖𝑒𝑙𝑑 𝑙𝑜𝑠𝑠 (%) = 𝑌𝑐𝑜𝑛 −
𝑌𝑥

𝑌𝑐𝑜𝑛
×

100                                                𝐸𝑞𝑛. 3 
where Ycon is corn yield in control soil (CON) and Yx is corn yield from NPK-

treated polluted soil (POT) or un-amended cement dust polluted soil (POL). 
Relative to control soil, per cent loss in corn yield was 55.69% in un-amended 

cement dust-polluted soil and 36.07% in NPK-treated polluted soil.  

 

DISCUSSION 

 

Soil fertility parameters are all interrelated and interact with the biological 
component of the soil in diverse ways. Multivariate statistics; a robust statistical 

tool with potential to identify, classify, quantify and interpret these relationships; 

was employed in this study. Multivariate statistics are used to account for 
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confounding effects, account for more variance in an outcome, and predict for 
outcomes. There are different multivariate approaches in frequent use (Benson et 

al., 2016). These include correlation analysis; Principal component analysis or 

factor analysis, agglomerative hierarchical cluster analysis (Francl, 1993; Jia et 

al., 2010; Benson et al., 2016) and multivariate analysis of variance or 

covariance (Samec et al., 2007). The present study employed the techniques of 

correlation analysis (CA), principal component analysis (PCA), agglomerative 
hierarchical cluster analysis (AHCA) and multivariate analysis of covariance 

(MANCOVA) to investigate the impact of cement dust pollution on nine fertility 

parameters of an agricultural soil and the consequence of that impact on crop 
yield. 

Soil fertility studies suggest a large number of parameters to indicate soil health 
and fertility, particularly for agricultural purposes (Dawes and Goonetilleke, 

2006; Samec et al., 2007; Shinde et al., 2016). Our study originally evaluated 12 

fertility parameters including soil organic carbon (SOC), total nitrogen (TN), 
available phosphorus (AvP), pH (pH), soil moisture content (SMC), 

dehydrogenase activity (DHA), acid phosphatase activity (ACPA), alkaline 

phosphatase activity (ALPA), β-glucosidase activity (BGA), bacterial count 
(LOG10BC), fungal count (LOG10FC) and soil microbial biomass-carbon 

(SMB-C). However, Pearson bivariate correlation removed pH, SMC and ACPA 

on the basis of violation of the multicolinearity assumption for a multivariate 

analysis. It is important to comment here that, although multivariate statistics 

simulates real life situations, its nine assumptions are often not met in real life. 

Attempts at meeting multivariate statistics assumptions, often attained by 
removal of ‘over-correlated’ variables, frequently result in loss of very useful 

information (Juhos et al., 2015). In this study, pH, SMC and ACPA were 

removed before PCA, AHCA and MANCOVA were conducted. 
The high significant but moderate inter-correlation among SOC, TN and AvP 

was not surprising because these nutrient elements are the major building blocks 

of cellular organisms including plants and microorganisms. Carbon is required 
for the synthesis of the carbon skeleton of all life forms while nitrogen remains a 

major limiting nutrient for several life processes and/or functions. The synthesis 

of the genetic material (DNA) and energy currency of cellular organisms, ATP, 
leans heavily on the availability of phosphorus in the environment without which 

biochemical reactions will not occur (Ekpenyong et al., 2017a). Availability of 

these nutrients in adequate amounts is the major driver of numerous soil 
biological activities required to establish and sustain soil fertility. Fertility 

limits/ranges of these elements for agricultural practices are detailed in Landon 

(1991) and FDALR (1990). 

 

Table 3 Levene's test for homogeneity assumption 

 

F df1 df2 Sig. 

Soil organic carbon 1.859 2 33 .172 

Total nitrogen 1.953 2 33 .158 

Available phosphorus .820 2 33 .449 

Dehydrogenase activity .576 2 33 .567 

Alkaline phosphatase activity 1.492 2 33 .240 

β-glucosidase activity .194 2 33 .825 

LOG10 Bacterial count .346 2 33 .710 

LOG10 Fungal count 1.302 2 33 .286 

Soil microbial biomass-carbon .291 2 33 .749 

Significance level, p = .05 

 

 

 

Table 4 Multivariate tests results of a one-way multivariate analysis of covariance (MANCOVA) 

Effect Value F Hypothesis df Error df Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter Observed Power 

Intercept Pillai's Trace .990 253.153 9.000 24.000 .000 .990 2278.379 1.000 

Wilks' Lambda .010 253.153 9.000 24.000 .000 .990 2278.379 1.000 

Hotelling's Trace 94.932 253.153 9.000 24.000 .000 .990 2278.379 1.000 

Roy's Largest Root 94.932 253.153 9.000 24.000 .000 .990 2278.379 1.000 

Period Pillai's Trace .948 48.357 9.000 24.000 .000 .948 435.213 1.000 

Wilks' Lambda .052 48.357 9.000 24.000 .000 .948 435.213 1.000 

Hotelling's Trace 18.134 48.357 9.000 24.000 .000 .948 435.213 1.000 

Roy's Largest Root 18.134 48.357 9.000 24.000 .000 .948 435.213 1.000 

Soiltype Pillai's Trace 1.836 31.122 18.000 50.000 .000 .918 560.195 1.000 

Wilks' Lambda .006 32.133 18.000 48.000 .000 .923 578.398 1.000 

Hotelling's Trace 25.909 33.106 18.000 46.000 .000 .928 595.916 1.000 

Roy's Largest Root 17.898 49.715 9.000 25.000 .000 .947 447.439 1.000 

 

 

Table 5 Extract of Tests of between-subjects effects of MANCOVA showing only covariate and the categorical variable 

Source 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Noncent. 

Parameter 

Observed 

Power 

Period SOC 36.482 1 36.482 22.777 .000 .416 22.777 .996 
TN .446 1 .446 64.055 .000 .667 64.055 1.000 

AvP 3.627 1 3.627 .700 .409 .021 .700 .128 

DHA 107.823 1 107.823 3.783 .061 .106 3.783 .471 

ALPA 67.402 1 67.402 28.624 .000 .472 28.624 .999 

BGA .290 1 .290 .010 .920 .000 .010 .051 

LOG10BC 12.980 1 12.980 10.966 .002 .255 10.966 .894 
LOG10FC 3.534 1 3.534 2.445 .128 .071 2.445 .329 

SMB-C 394632.954 1 394632.954 98.578 .000 .755 98.578 1.000 

Soil 

type 

SOC 203.300 2 101.650 63.464 .000 .799 126.928 1.000 

TN .172 2 .086 12.381 .000 .436 24.763 .993 
AvP 200.356 2 100.178 19.345 .000 .547 38.690 1.000 

DHA 92.454 2 46.227 1.622 .213 .092 3.243 .317 

ALPA 572.569 2 286.284 121.57
6 

.000 .884 243.152 1.000 

BGA 463.433 2 231.716 8.235 .001 .340 16.470 .943 
LOG10BC 49.306 2 24.653 20.829 .000 .566 41.657 1.000 

LOG10FC 4.246 2 2.123 1.469 .245 .084 2.937 .290 

SMB-C 170761.907 2 85380.954 21.328 .000 .571 42.656 1.000 

Legend: SOC-Soil organic carbon; TN-Total nitrogen; AvP-Available phosphorus; DHA-Dehydrogenase activity; ALPA-Alkaline 
phosphatase activity; BGA-β-glucosidase activity; LOG10BC-LOG 10 Bacterial count; LOG10FC-LOG 10 Fungal count; SMB-C-Soil 

microbial biomass-carbon
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Figure 4 3-D bar representation of nutrient parameter fluxes in studied soils. a- 
Soil organic carbon; b-Total nitrogen; c-Available phosphorus 

 

 

 

 

Figure 5 3-D bar representation of enzyme activity fluxes in studied soils. a- 
Dehydrogenase activity; b- Alkaline phosphatase activity; c- β-

glucosidase activity 

 

 

 

 
Figure 6 3-D bar representation of microbial biota fluxes in soils: a- Soil 

microbial biomass-carbon; b- LOG 10 Bacterial count; c- LOG 10 

Fungal count 

 

 
Figure 7 3-D bar representation of mean corn yield from studied soils at 

different planting period 
 

Results from this study showed that these three elements correlated positively 

and significantly with each other. A fourth parameter with which they shared 
positive correlation was fungal population (LOG10FC). Understandably, the 

nutrient elements showed negative significant correlation with soil microbial 

biomass-C (SMB-C). This indicates that when soil microbial biomass-carbon 
increases in the soil, the organic carbon content (non-microbial) decreases owing 

to increased metabolism and conversion to microbial biomass carbon (Kaur et 

al., 2000). This study showed that fungal count, which forms a part of the 
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microbial community, does not share the negative correlation with nutrient 
elements, but bacterial count (LOG10BC) does. We hypothesize that bacteria 

with their high specific growth rate outcompetes fungi in the presence of high 

organic carbon, thereby constituting the bulk of SMB-C, hence their significant 
positive correlation. Therefore as LOG10BC rises along with SMB-C, soil 

concentrations of LOG10FC, SOC, TN and AvP decrease. Spore-forming 

bacteria, particularly from Bacillus, and molds of the genera Aspergillus, 
Penicillium and Cladosporium, dominated the first surface layer of cement dust 

polluted soils but their populations were grossly reduced in control soil (CON) 

but less so in NPK-treated soils (POT) which were overtaken by yeast genera and 
more diverse bacterial species and genera. 

 

Table 6 Tests of between-subjects effects of ANCOVA for corn yield data 

Source 

Type III Sum of 

Squares df Mean Square F Sig. Partial Eta Squared Noncent. Parameter Observed Power 

Corrected Model 119.302 3 39.767 14.368 .000 .574 43.104 1.000 

Intercept 160.593 1 160.593 58.022 .000 .645 58.022 1.000 

Period .074 1 .074 .027 .871 .001 .027 .053 

Soil type 119.228 2 59.614 21.538 .000 .574 43.077 1.000 

Error 88.569 32 2.768      

Total 1287.869 36       

Corrected Total 207.871 35       

 
Pearson bivariate correlation also showed that dehydrogenase activity (DHA), 

alkaline phosphatase (ALPA) and β-glucosidase had negative correlations with 

the nutrient elements but positive correlation with SMB-C and bacterial count. It 
has been reported that microbial biomass represents very little source of nutrients 

relative to soil organic matter and standing tree biomass, however, it remains a 

repository of plant nutrients and a channel for soil organic matter incorporation 
(Templera et al., 2003). Biological oxidations of soil organic compounds are 

mostly, if not entirely, dehydrogenase-mediated reactions (Wolinska and 

Stepniewska, 2012). Since DHA measures microbial respiration, it very readily 
serves as a reliable index of soil respiration which correlates strongly and 

positively with SMB-C (Salazar et al., 2011). β-glucosidase is an important soil 

enzyme because of its involvement in the final steps of biodegradation of the 
most abundant carbon substrate, cellulose, in the soil (Vinhal-Freitas et al., 

2010; Adetunji et al., 2017). Its activity (BGA) is therefore significant in carbon 

cycling and hence an important indicator of biological activity and soil fertility 
(Stege et al., 2010). Alkaline phosphatase is essential in phosphate metabolism 

and is a useful index for determining agricultural soil quality (Nalini et al., 

2014). As soil microbial biomass increased, the activities of these three enzymes 
increased. Another poorly understood relationship was the negative correlation 

between AvP and ALPA. It was expected that an increase in alkaline phosphatase 

with increased bacterial population will lead to increased available phosphorus 
but the reverse was the case. This suggests that other parameters; especially trace 

metals (Ekpenyong et al., 2017b) or micronutrients (Fernandez-Moya et al., 

2014) might be involved in the adjustment of the relationship between this 
enzyme and other parameters because relationships in natural environments are 

hardly ever bivariate. 

Principal component analysis (PCA) is a dimension-reduction analytical process 
that involves the transformation of a large number of weakly to moderately 

correlated variables into a smaller number of uncorrelated variables. A 
correlation matrix that shows only a few correlations above .30 suggests 

discontinuation of the analysis (Tabachnick and Fidell, 1996). Our correlation 

analysis results showed that all but one of the correlations was above .30 
suggesting that PCA could be conducted on the data. Our results revealed a KMO 

of .765 and a significant (p < .0005) sphericity test suggesting that the assumed 

identity data matrix of the null hypothesis should be rejected and a PCA 
accordingly performed. Only two principal components with initial eigenvalues 

≥1.0 were extracted suggesting that the PCA constructed two principal 

components from the survey items based on eigenvalues. An eigenvalue is a ratio 
of the shared variance to the unique variance accounted for in the construct of 

interest by each factor obtained from the extraction by principal components. 

Eigenvalues of 1.0 or greater are an arbitrary criterion accepted to help decide if a 
factor should be further interpreted or not. Extraction of the two components with 

cumulative explained variance of 68.33% suggests that a two factor solution 

would be adequate for the study. 
The un-rotated factor loadings of the PCA (data not shown) showed that most of 

the dependent variables had high positive or negative loadings (r > .70) on PC1. 

Apart from dehydrogenase activity (DHA) and fungal count (LOG10FC) which 
had moderate negative and positive loadings respectively on PC2, other variables 

had low positive and low negative loadings on PC2. Our reproduced correlations 

(data not shown) revealed small residuals indicating that there was very little 
difference between the reproduced correlations from the two extracted 

components and the actual correlations observed between the variables. This 

suggests that the 2 factor solution could provide an accurate summary of the 
relationships in the data. 

The two component matrices rotated by Varimax with Kaiser Normalization 

through angles of 34.51º (PC1) and 55.53º (PC2) revealed that only LOG10BC, 
SMB-C and ALPA had high positive loadings on PC1 and low loadings on PC2 

while LOG10FC had a high positive loading on PC2 but low loading on PC1. 

The effect of rotation is to spread the importance or contribution more or less 
equally between the two extracted principal components. A close observation of 

the right side of Table 2 reveals that the eigenvalues of the rotated factors had 

been spread between the two components as 3.817 and 2.333 for PC1 and PC2 

respectively, compared to 5.141 and 1.009 in the initial solution. The 68.33% 
cumulative variability was accordingly distributed; 42.41% for PC1 and 25.92% 

for PC2 compared respectively to 57.11% and 11.21% in the initial solution. 

Variable membership of PC1 included SOC, TN, AvP and LOG10FC while PC2 
contained DHA, ALPA, BGA, LOG10BC and SMB-C. This result agrees with 

those of Jia et al. (2010) where they obtained three principal components with 

available phosphorus and organic matter extracted into one component. Our 
results showed that all members within a principal component were positively 

correlated among each other but correlated negatively with every other variable 

from another component. 
The study confirmed the two factor solution of PCA with hierarchical cluster 

analysis (HCA) using Euclidean distance. The dendrogram showed that all the 

nine tested variables could be classified into two clusters with similar 
membership to that of PCA; a confirmation of the reliability of the PCA results. 

Firdous et al. (2016) reported excellent results using similar approaches in their 

study on soil quality parameters in Rawal Lake watershed. Our observations 
show that both component extraction and variable clustering were performed on 

the basis of variable relationship to soil microbial biomass-carbon. Variables in 

PC 1/cluster 1 were all negatively correlated to SMB-C but the variables that 
shared PC 2/cluster 2 with SMB-C were all positively correlated.   

A one-way multivariate analysis of covariance (MANCOVA) was conducted on 

data to ascertain the main effect of soil type on the nine moderately correlated 
dependent variables (DVs). The homogeneity of covariance assumption was 

violated; however, that of homogeneity of error variance was met. This enabled 

the interpretation of the multivariate test by Pillai’s Trace instead of the 
frequently reported Wilks’ λ test. This test is reported as the most robust of all 

multivariate test because it could accommodate MANCOVA analysis when the 
homogeneity test of equality of covariance; the Box M test, is violated. The 

statistically significant effect of the covariate on the combined DVs suggests that 

the covariate adjusted values of the outcome, however, the main effect of soil 
type on the combined DVs was still statistically significant when controlling for 

the covariate. These results simply imply that the different soil types affected the 

response variables and that planting/sampling period could also adjust whatever 
influence soil type had on those responses. 

The tests of between-subjects effect showed that sampling/planting period did not 

adjust the effects of soil type for Avp, DHA, BGA and LOG10FC indicating that 
whatever outcome was observed was purely due to differences in soil type. 

Bonferoni’s test; the most robust and discriminating post hoc multiple 

comparison tests was used to separate significant means. The test revealed that no 
significant difference (p = .448 > .05) in mean SOC levels existed between 

control soil (CON) and NPK-treated polluted soil (POT) indicating that fertilizer 

application could improve SOC content of the cement dust polluted soil. The 
non-significant difference in TN between CON and POT (p = .761 > .05) and 

POT and POL (p = .276 > .05) indicate improvement of mean TN content by 

fertilizer application on cement dust polluted soil. Mean difference in available 
phosphorus (AvP) between CON and POT was not significant but significant 

difference existed between POT and POL and between CON and POL indicating 

respectively the effect of fertilizer application and the impact of cement dust 
pollution. Previous study by Ibanga et al. (2008) showed that cement dust 

pollution does significantly influence the chemical properties of Calabar soils. 

Mean alkaline phosphatase activity (ALPA) was significantly different between 
all soil type pairs suggesting that fertilizer treatment had little or no effect on this 

important soil activity. Bonferroni multiple comparison result also showed that 

mean β-glucosidase activity (BGA) and mean bacterial population (LOG10BC) 
differed significantly between CON and POL and between CON and POT but not 

between POT and POL suggesting that the fertilizer treatment only slightly 

improved these variables in the cement polluted soil but the improvements were 
still a long way off those in control soil. Lastly, mean difference in soil microbial 
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biomass-carbon (SMB-C) was significant between CON and POL underlining the 
impact of cement dust on the variable. However, no significant difference existed 

between CON and POT (p = .062 > .05) or between POT and POL (p = 1.000 > 

.05) indicating the effectiveness of fertilizer treatment in improving total soil 
microbial biomass-carbon (SMB-C) content. 

The ANCOVA analysis of corn yield revealed that yield did not differ 

significantly with planting period but with soil type, F (2, 32) = 21.54, p < .0005; 
model adjusted r2 = .534. This model could only explain 53.4% of the variations 

in the data suggesting that a lot of variations have been left unexplained. This is 

clearly due to the attempts made to meet most of the assumptions of this 
important statistical tool. It is actually because the planting periods of corn in 

Southern Nigeria do not significantly influence yield, that the region is known for 
an almost all-year round supply of the product. The significant mean difference 

in corn yield between CON and POL as well as that between CON and POT 

presented by Bonferroni multiple comparisons indicated that cement dust 
pollution significantly reduced corn yield and that fertilizer amendment of the 

polluted soil could not significantly reduce the impact of cement dust on the 

agricultural soil. Relative to the control soil, per cent loss in corn yield was 
55.69% in un-amended cement dust-polluted soil but the loss reduced to 36.07% 

in NPK-treated polluted soil. 

 

CONCLUSION 

 

Principal component analysis (PCA) extracted two principal components, PC1 
and PC2, from the nine dependent variables (DVs) which explained 68.33% 

variability about the data. Members within each component correlated positively 

with one another but negatively with members of the second component. The 
number and membership of extracted components were confirmed by the 

dendrogram of hierarchical cluster analysis (HCA) which presented two clusters. 

Significantly, component extraction and variable clustering were performed on 
the basis of variable relationship to soil microbial biomass-carbon (SMB-C). A 

one-way multivariate analysis of covariance (one-way MANCOVA) established 

significant main effect of soil type on the DVs after controlling for sampling 
period as covariate. The test of between-subjects effect showed that mean values 

of fungal population and dehydrogenase activity were not significantly affected 

by cement dust pollution or fertilizer treatment of the agricultural soils. Relative 
to control soil, per cent loss in corn yield was 55.69% in untreated cement dust-

polluted soil but reduced to 36.07% in fertilizer-treated-polluted soil. The 

analysis has shown that cement dust pollution significantly reduced corn yield 

and that fertilizer amendment of polluted soil has little potential to reduce the 

impact and restore the fertility of cement dust polluted soil for high productivity. 
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