
 

 
 

  

 
 

 
 

                                                    

 

 
1 

 

  

REVIEW ON BIO-DETOXIFICATION OF AFLATOXINS BASED ON LACTIC ACID BACTERIA: MECHANISM AND 

APPLICATIONS 
 

Hajar Zolfaghari1, Arezou khezerlou1, Seyed Alireza Banihashemi1, Milad Tavassoli1, Ali Ehsani*2   
 

Address(es):  
1 Student research committee, Department of Food Science and Technology, Faculty of Nutrition and food science, Tabriz University of Medical Sciences, Tabriz, Iran. 
2 Professor, Department of Food Science and Technology, Faculty of Nutrition and food science, Tabriz University of medical sciences, Tabriz, Iran. 

 
*Corresponding author: ehsani@tbzmed.ac.ir 

 
ABSTRACT 

 
Keywords: Aflatoxin; Cell wall; Detoxification; Lactic acid bacteria 

 
 

INTRODUCTION 

 

Access to healthy food, without any undesirable contamination, is one of 

fundamental human right  (Ayala and Meier., 2017; Muhialdin et al., 2020).  

Scientific studies show that in recent decades a number of contaminants, especially 
mycotoxins, have been spread from the environment to natural resources and food 

and feed. Mycotoxins have bad effects on human health and cause diseases such 

as cancer. This is one of the main concerns of developing countries  (Alshannaq 

and Yu., 2017). Aflatoxins (AFs) are the most dangerous among mycotoxins. 

Today, many methods (including physical, chemical and biological) are used to 
detoxify and decontaminate AFs from food and feed (Sipos et al., 2021). Physical 

and chemical methods in the industry are not being used due to the high cost and 

effects on the texture and taste and the reduction of nutritional value (Deng et al., 

2019; Jard et al., 2011). Most researchers have identified biological methods as 

the best way to decontaminate AF. These methods due to the use of effective 

microbial species with the ability of reducing AF easily to maximize efficacy, 
minimize cost, compatibility with the environment and not to reduce nutrition 

value have been considered (Marshall et al., 2020). Most lactic acid bacteria 

(LAB), especially lactobacillus and Bifidobacterium species, are probiotic 
microorganisms that have the ability to detoxify AFs (Liu et al., 2020). According 

to the World Health Organization, probiotics are living microorganisms that 

provide health benefits to their host, if they consumed as much as needed. These 
living microorganisms help to maintain the balance of the digestive tract of 

mammals and their functional properties include Immune modulation, reducing 

serum cholesterol, gastrointestinal tract infections, cancer risk, skin sensitization,  
food allergy in children, urinary tract infections and the risk of chronic and travel 

diarrhea (Aureli et al., 2011; Oelschlaeger., 2010). There are also reports of the 

protective effect of probiotic LABs against chemical mutagenic agents such as 
AFs, multi-ring amines, N-nitrosamine compounds and benzopyrene.  Therefore, 

using these probiotic bacteria with the AFs removing the ability, also can help to 

increase food safety along with their beneficial properties (Afshar et al., 2020; 

Ondiek et al., 2022). In the next sections of this paper, overview of Mycotoxins, 

AFs and the beneficial properties of probiotics, cell wall structure of lactic acid 

bacteria as the most common probiotics, and their potential applications to 
eliminate AF have been investigated. 

 

 
 

MYCOTOXINS  

 

Mycotoxinogenic fungi play an undeniable  role in reducing food safety through 

the production of mycotoxins. These natural carcinogens (mycotoxins) are present 

in human diets due to the contamination of raw materials or the production of toxic 
substances during the processing or storage of food (Yang et al., 2020). 

Mycotoxins are toxic secondary metabolites of low molecular weight, which do 

not have antigenic properties alone and therefore cannot stimulate the host immune 
system (Santos et al., 2019). The importance of mycotoxins is due to their toxicity, 

carcinogenic, teratogenic, mutagenic, acute and long-term suppressive effects 
(Bakırdere et al., 2012). Specifically, they are common in tropical and sub-

tropical countries and  infect about 25% of human food and animal feed (Monda 

and Alakonya, 2016). Their prevalence may be by using toxic food or 
contaminated plant and animal products. Six groups of mycotoxins, including AFs, 

fumonisin, ochratoxin, patulin, tricotesen, and zearalenone, are often seen in 

various food systems  (Huffman et al., 2010). The studies of the effect of 
microorganisms on mycotoxins have been begun decades ago. The surface binding 

of some microorganisms to various mycotoxins including AFs, ochratoxin and 

zearalenone has been reported. Many studies have been conducted to remove 
mycotoxins by lactic acid bacteria. The ability of LABs to remove mycotoxins 

greatly depends on the environmental conditions, type, composition of the amino 

acid and the peptidoglycan structure (Agriopoulou et al., 2020). The connection 
of ochratoxin and zearalenone is attributed to cell wall glucans. Hence, it can be 

concluded that the removal of mycotoxins from different matrices by living and 

non-living cells depends on their strain and species, and each strain and species 
behave in a different way (García‐Béjar et al., 2021; Vartiainen et al., 2020).  

 

Aflatoxins  

 

AFs are a group of carcinogenic mycotoxins that cause acute or chronic poisoning 

and liver cancer in humans and animals. They also cause a lot of economic losses 
in the industry due to contamination of food and animal feed (Vartiainen et al., 

2020). These toxins are secondary metabolites of some Aspergillus species, 

especially Aspergillus flavus and Aspergillus parasiticus and mainly found before 
harvesting or during storage in cereals, especially rice, corn, wheat, barley, 

sorghum, almonds, peanuts, Brazilian nuts, pistachios and oilseeds such as 

cottonseed (Liu et al., 2020). The production of this toxin can be affected by 
several factors, including water activity (aw), temperature, light, oxygen 
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concentrations, pH, nutrients, storage time, mechanical/thermal damage, and 

competitive growth of other microorganisms. Among them, aw and temperature, 

the two key environmental factors during storage, have a strong impact on both 

fungal growth and secondary metabolite production. Also, mold growth is strongly 

influenced by humidity. The optimal growth temperatures for Aspergillus range 

from 28–40 °C with and aw 0.94–0.99, but the fungi can survive temperatures of 
12–48 °C. Both A. flavus and A. parasiticus can grow over the pH range of 2.1 to 

11.2, with an optimum between pH 3.5 and 8 (Lv et al., 2019). More than 20 types 

of AFs are known, of which Aflatoxin B1 (AFB1), Aflatoxin B1 (AFB2), Aflatoxin 
G1 (AFG1), Aflatoxin G1 (AFG2), Aflatoxin M1 (AFM1), and Aflatoxin M1 

(AFM2) are biologically common (Miklós et al., 2020). which their structure is 
shown in Figure 1. Among AFs, AFB1 and AFB2 are the most important and type 

B1 is known as the most toxic AF. The liver is the main target organ for AF, 

although the tumor may also occur in other organs, such as the lung, kidney, and 
colon (Long et al., 2016). Aspergillus Flavus is known to produce AFB, while 

Aspergillus Parasiticus produces both AFB and G through numerous biochemical 

processes. Hydroxylation of AFB1 leads to the formation of AFM1. Receive and 
direct absorption of AFB1 by animal’s produces and stores AFM1 in milk (Patyal 

et al., 2020). AFM1 is resistant to pasteurization and sterilization. The European 

Union and the International Codex have set the maximum level of  0.5 mg/L for 
AFM1 in milk, milk powder and other processed products (Fashandi et al., 2018). 

Chemical and physical methods may be subject to limitations in the areas of 

biological safety, the loss of quality and nutritional value, the limitations on the 
efficiency, effectiveness and cost of equipment. A variety of chemical methods are 

used in the food and feed industry to remove or reduce mycotoxin content, such as 

oxidation, alkalization, acidification, reduction, and ammoniation. The use of 
hundreds of chemicals, such as ammonia, calcium hydroxide monoethylamine, 

sodium hydroxide, ozone, chlorine, and calcium hydroxide, has shown promise in 

reducing mycotoxin levels in foods. It is possible to partially destroy mycotoxins 
by using chemical methods, such as oxidation and alkalization, but some nutrients 

are also destroyed (Jard et al., 2011; Karlovsky et al., 2016). 

The safety and harmless of lactic acid bacteria and Bifidobacteria as probiotics 
provide a good opportunity for application in biological reduction of AF in food  

(Lyagin and Efremenko, 2019). The ability and stability of microorganisms in 

binding toxins are very important for evaluating the ability of strains to reduce the 
biological effects of AFs. The release of toxin during transition through the 

stomach may result in harmful health effects. This limitation is reversible and its 

stability depends on the strain, formation conditions and method used to determine 

the stability (Ahlberg et al., 2015). 

 

 
Figure 1 The structure of common Aflatoxins 

 
PROBIOTIC BACTERIA  

 

Probiotic is derived from the Greek word "for living". They are known as living 

organisms, which can have beneficial effects on the host by improving the balance 

of the microbial flora of the gut if used sufficiently (Kouhi et al., 2022). Probiotics 
are living organisms that confer health benefits on the host when administered in 

an adequate amount. Typically, they are available as either food products 

(fermentable or non-fermentable) or dietary supplements (capsule, tablet, or 
powder). A growing awareness among consumers is leading to an increase in 

consumption of probiotics. Probiotics are an innovative and inexpensive invention 

in society that can improve the health of people. Due to the accumulation of toxic 
substances during digestion, the presence of bad microorganisms causes many 

diseases and illnesses in the human body. During this time, the immune system 

begins to deteriorate (Fashandi et al., 2018). Probiotics in higher doses are an 
alternative method to treating such problems instead of taking antibiotics. 

Probiotics can be formulated in various products, especially foods, medicines and 

dietary supplements. This group of bacteria plays an important role in inhibiting 
infections in different parts of the body, especially the mouth, gastrointestinal and 

genitourinary tract (Picard et al., 2005). Among probiotics, Lactobacillus species 

and Bifidobacterium species are most used, but Saccharomyces cerevisiae and 
some Bacillus species are also used as probiotics. Therefore, it can be said that 

lactic acid bacteria, especially lactobacillus and Bifidobacterium, are the most 

important probiotic bacteria that are completely safe and non-pathogenic to 

humans. In order to provide health benefits, the end product population of viable 

bacteria must be greater than 107 CFU/mL. These probiotics can prevent the 

absorption of AFs in the gastrointestinal tract by binding to AFs in foods  (Guarner 

et al., 2012). 

 

Lactic acid bacteria and bifidobacteria 

  

Lactic acid bacteria are Gram-positive, non-spore forming and catalase-negative 

bacteria and they mainly produce lactic acid by fermentation of carbohydrates.  For 
the first time, they were isolated from milk and widely used as starting cultures in 

dairy, meat, vegetable and cereal industries (Valenzuela et al., 2019). They are 
mainly divided into four genera, such as Lactobacillus, Lactococcus, Leuconostoc, 

and Pediococcus. The term lactic acid bacteria are used for different species of 

Bifidobacterium, although they have unique carbohydrate fermentation pathways 
and have no physiological relationship (Hernandez‐Mendoza et al., 2011).  

Lactobacillus species have strong antimicrobial activity against many pathogen 

microorganisms. Also, Enterococcus faecium is one of the lactic acid bacteria 
found in nature and some processed dairy products (Bartkiene et al., 2020). Lactic 

acid bacteria naturally exist in mucous membranes and skin of the human and 

animal’s body. They have been widely used in fortified foods, due to their 
beneficial health effects and preservative properties. Most of their useful properties 

relate to the binding capacity and adhesion to the intestinal mucosa or epithelial 

cells. They also protect food from toxic substances and produce some antagonistic 
compounds that are capable of controlling pathogenic bacteria and spoilage  (Alp 

and Kuleaşan, 2019; Mirlohi et al., 2008). Due to their efficiency, low cost, and 

nature-friendly properties, biological decontamination procedures are rapidly 
becoming an encouraging alternative to chemical methods. There is a significant 

efficacy of LAB for eradicating mycotoxins irreversibly, without leaving any toxic 

residues. In different food products such as dairy products, they can be used as 
starter cultures in fermentation processes (Sevim et al., 2019). It is possible to 

enjoy the benefits of LAB through consumption of probiotic-related food products. 

Most commonly, LABs preserve materials by producing organic acids, competing 
for nutrients, and ultimately releasing antimicrobials. As well as reducing and 

inactivating toxins, some antifungal metabolites released by LABs also suppress 

fungal growth. Metabolites such as phenolic compounds, fatty acids, hydrogen 
peroxide, and proteinaceous compounds are present in the body. Fermented dairy 

products are highly dependent on this fermentation procedure that controls the 

contamination of the product by pathogens by producing lactic acid from lactose. 

Two mechanisms are involved in mycotoxins' detoxification from food by the 

LAB. It is possible to detoxify food by LAB by using the viable cells of the 

microbes or by using the enzymes produced by some LAB strains (Muhialdin et 

al., 2020). Microorganisms, including fungi, have been a source of food spoilage 

for an extended period of time (Varga and Tóth, 2005). A number of bioactive 

metabolites produced by LAB limit the growth of fungi and prevent the formation 
of mycotoxins in food. The bioactive compounds contained in LAB include acids, 

hydrogen peroxide, carbon dioxide, phenyllactic acid, and low molecular weight 

peptides. The LAB produces a number of proteolytic enzymes capable of 
hydrolyzing proteins. These enzymes include cell-wall bound proteinases, which 

break down proteins into polypeptides, peptide transporters that carry peptides into 

cells, and intracellular peptidases which degrade them into amino acids. As a result 
of LAB proteolytic enzymes, mycotoxins in food are detoxified most effectively 

(Alberts et al., 2009).  

Generally, the antimicrobial activity of LAB can be explained by three 
mechanisms such as organic acid function, competition for nutrients and the 

production of antagonistic compounds (Chen et al., 2019). Antifungal metabolites 

of lactic acid bacteria include sugary catabolites (such as organic acids, acetic acid, 

and formic acid), oxygenated catabolites (such as hydrogen peroxide), and protein 

compounds (such as low molecular weight peptides, hydroxylic fatty acids, and 

phenolic compounds) (Servin, 2004). 
 Antifungal activity of LAB is affected by some processing parameters including 

temperature, incubation time, pH and nutritional factors  (Dalié et al., 2010). Using 

a combination of certain strains of probiotic bacteria may be more effective than 
using a single strain, however, it may reduce the toxin removal capacity (Liu et 

al., 2019). Therefore, to remove a single compound, an efficient strain and to 
remove several compounds, a mixture of the best strains is used (Khorshidian et 

al., 2020). 

 
Cell wall of acidic lactic acid bacteria 

 

The LAB has a peptidoglycan matrix, which forms the main constituent of the cell 
wall structure. Teichoic Acid, Lipoteichoic Acid, protein layers, and neutral 

polysaccharides are the other constituents of the cell wall that have different 

functions (Niderkorn et al., 2009). Adhesion and biding to macromolecules are 
the function of the fiber network in Teichoic Acid and polysaccharides such as cell 

wall polysaccharides and exopolysaccharides. Cell wall polysaccharides of lactic 

acid bacteria are one of the most commonly used polysaccharides with a wide 
variety in the compounds containing rhamnose (Chapot-Chartier and 

Kulakauskas, 2014). Exopolysaccharides are either transmitted to the 

extracellular medium or attached to a surface to form a capsular polysaccharide 
(Liu et al., 2019). Some genera of Lactic acid bacteria, including Lactobacillus, 
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Enterococcus and Streptococcus, as well as the genera used in the dairy industry, 

such as Bifidobacteria and Propionic bacteria, produce exopolysaccharides as 

glucose, galactose, rhamnose, mannose, N-acetylglucosamine and N-acetyl 

galactosamine. Peptidoglycan in LAB is composed of N-acetylglucosamine and 

N-acetylmuramic acid disaccharide polymers that are arranged side by side with 

beta-1, 4 glycosylated bonds and these chains are bonded by transverse 
pentapeptide bridges (Sánchez et al., 2006). The peptidoglycan disaccharide units 

have three different modes. Acetyl groups may be broken down in both N-acetyl-

glucosamine disaccharides and N-acetyl muramic acid (DeMeester et al., 2019). 
An extra acetyl group is added to the oxygen number 6 of N-acetyl-muramic acid 

and the position of carbon-6 of N-acetylmuramic acid is replaced by teichoic acid. 
The peptide segment consists of 3 amino acids that are linked to muramic acid. The 

amino acids of the penta-peptide bridge in N-acetyl-muramic acid usually contain 

one of the two compounds, L-alanine, D-glutamine, Diaminopimelic acid, or L-
alanine, D-glutamine, and L-Lysine. Although at least five different subtypes have 

been identified for peptidoglycans (Delcour et al., 1999). A di-peptide residue 

from D-alanine is directly or via a bridge attached to this peptide. The amino acid 
D-alanine in some lactic acid bacteria that are resistant to vancomycin, such as 

Enterococcus faecium, Pediococcus Pentosaceus, Lactobacillus plantarum and 

Lactobacillus casei replace the d-lactate in penta peptide bridge, but in the bacteria 
Enterococcus faecium, Pediococcus Pentosaceus, Lactobacillus plantarum, 

Lactobacillus casei and Enterococcus Gallinarum, D-serine is replaced (Barbieri 

et al., 2019).  
Teichoic acids are anionic polymers in the cell wall that covalently bond to the 

peptidoglycan layer and are the cause of the serological difference is the presence 

of several gram-positive bacteria (Brown et al., 2013). Teichoic acids are 
composed of glycerol phosphate or ribitol phosphate polymers and carbohydrates 

that are bonded to each other by a phosphodiester bond. The composition of the 

structural unit in Lactobacillus plantarum has been reported as glycerol phosphate-
n-acetyl manozamin with glycosylated beta-1 and 4 grafts (Seltmann and Holst, 

2013). The lipoteichoic acid is structurally similar to teichoic acids, but they attach 

to the cytoplasmic membrane glycolipid, instead of peptidoglycans. Generally, the 

glycolipid consists of diacylglycerol bonded to di-, or disaccharide units 

(Hynönen and Palva, 2013). Frequently it has been recognized that lipoteichoic 

acid is poly (glycerol phosphate) LAB that is almost similar to the poly (glycerol 

phosphate) teichoic acids, which differ only in the chirality of glycerol. Similar to 

teichoic acids, the lipoteichoic acid also have glycerol and di-alanine, which are 

replaced by hydroxyl groups in glycerol. It has been reported that many LAB of 
the genus Lactobacillus produce s-layer protein. These proteins are noncovalent 

and have a size of 25-50 KDa (Silhavy et al., 2010).  

LAB that cannot produce s-layer proteins has a negative surface charge at neutral 
pH. Despite the fundamental nature of the surface layer protein, it is reported that 

surface charge on the surface layer which produced by Lactobacillus also have 
been reported negative  (Ventura et al., 2002).A hypothesis for this mechanism 

may be the involvement of positive-charge regions in surface-layer proteins on 

binding to peptidoglycans. Injury or destruction in the cell wall of the bacteria in 
Comparison to a completely healthy and without attachment sites can reveal 

unattended connection sites and may allow the attachment of AF to the cell wall 

and plasma membrane compounds  (Macek et al., 2019; Smit et al., 2001). The 
use of acidic and heat treatments is likely to disrupt the integrated structural form, 

and thus allow AF to be incorporated into intracellular compounds. This 

mechanism was identified during the use of antibody to analyze AFB1 in acid-
treated bacteria that prevents antibody entry, because the size of the antibody 

molecule is large and could not cross the cell wall of the bacterium and bind to the 

AFB1 molecule in the inner wall. According to a study by Haskard et al. (2001b), 
Lactobacillus rhamnosus was exposed to enzymatic treatment and its effect on the 

binding of AFB1 was investigated. The results showed that there was no evidence 

of exopolysaccharide involvement, but cell wall proteins, calcium ions and 
magnesium ions played a decisive role in this regard. Adsorption to surface 

components of different nature has been reported as the major mechanism for 

binding, mycotoxins. Figure 2 shows the cell wall structure in LAB and proposed 
processes involved in the interaction with AFs.   

 

 

 
Figure 2 Schematic representation of the cell wall structure in LAB and proposed processes involved in the interaction with AFs. Adsorption to surface components of 
different nature has been reported as the major mechanism for binding, mycotoxins. EPS, exopolysaccharides; SLP, S-layer proteins; PG, peptidoglycan; TA, teichoic 

acids; LTA, lipoteichoic acids; M, cytoplasmic membrane. 
 

The function of lactic acid bacteria in aflatoxin detoxification 

 

According to previous studies, microorganisms such as Saccharomyces cerevisiae, 

Flavobacterium and Lactobacillus species, including Lactobacillus acidophilus 

and Lactobacillus rhamnosus, and other subtypes, could decompose and bind AFs 
through their cell walls (Shetty and Jespersen, 2006). Injury or destruction in the 

cell wall of the bacteria in Comparison to a completely healthy and without 

attachment sites can reveal unattended connection sites and may allow the 
attachment of AF to the cell wall and plasma membrane compounds (Gao et al., 

2021; Haskard et al., 2001b). According to previous studies, polysaccharides and 

peptidoglycans in the cell wall are two main elements in LAB, and both of these 
compounds are strongly affected by acidic and heat treatment in order to 

effectively interact with mutagens (Sezer et al., 2013). Heat causes the 

denaturation of protein or formation of maillard reaction products  between 
polysaccharides and proteins or peptides. Also, acid can break glycosidic bonds in  

polysaccharides, and release monomer, which later turns into aldehyde and then 

breaks down peptide bonds and releases amino acids. Although the peptidoglycan 
layer is quite thick in these microorganisms, but in this case there may be a 

reduction in thickness and transverse joints in it (El-Nezami et al., 1998; Gao et 

al., 2021). It is noted that AFB1,  connects to the superficial compounds of LAB.  
Destruction of these specific compounds of the cell wall, such as carbohydrates 

and proteins, reduces AFB1 bonding by Lactobacillus rhamnosus GG, and it is 

stated that these compounds are important for the binding of AFB1. According to 
a study by Haskard, El-Nezami, Kankaanpää, Salminen, and Ahokas (2001a), the 

bacterium Lactobacillus rhamnosus was exposed to enzymatic treatment and its 

effect on binding of AFB1 was investigated and the results showed that there was 
no evidence of exopolysaccharides involvement, but the proteins in the cell wall, 

calcium and magnesium ions play a decisive role in this regard (Fochesato et al., 

2019; Haskard et al., 2001a). It is likely that the use of acid and heat treatment 
eliminate the structural integrity and there for AF could bond to intracellular 

compounds. This mechanism was identified during the use of antibodies to analyze 

AFB1 in acid-treated bacteria,  which prevented the entry of antibodies, because 
the size of the antibody molecule is large and does not have the ability to cross the 

cell wall of the bacterium and connect to the AFB1 molecule in the inner wall 

(Ahlberg et al., 2015). Some of the different types of LAB and Bifidobacteria have 
been investigated for the removing AFB1 from aqueous buffer solution, in vitro, 

and it has been said that their elimination is by binding of bacteria to toxic 

compounds and is not related to bacterial metabolism (Haskard et al., 2001b; 

Hernandez-Mendoza et al., 2009). Table 1 lists the LAB that can remove AFs. 

Muaz et al. (2021) investigated the in vitro ability of L. rhamnosus, L. lactis ssp. 

lactis and one L. lactis ssp. cremoris at 1010 cells/mL to bind to AFM1 in skimmed 
milk, and showed higher binding capacities by 81.4, 56.8, and 50.8%, respectively. 

This binding is due cell wall isolates and exopolysaccharide compounds. Liew et 

al. (2018) studied the ability of L. casei Shirota (live cell, heat-treated, and cell 
wall compounds) to bind AFB1, the binding capacity of L. casei Shirota was 

dependent on concentration of AFB1.They found that live cells had maximum 

binding capacity (98%). In vivo studies, L. casei Shirota neutralized toxicity of 
AFB1 on body weight and intestine by binding process. Chlebicz and Śliżewska 

(2020) performed in vitro study on the binding properties of AFB1 by 12 strains 

of lactic acid bacteria, which its concentration was decreased on average by 60% 
after 24 h incubation. Ben Salah-Abbes et al. (2020) have investigated the ability 

of L. paracasei BEJ01 to bind AFM1 in vitro and have revealed this strain was 

very effective for eliminating AFM1 with more than 95% of the toxin with 
concentration of 100 µg/ml. 
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Table 1 The ability of lactic acid bacteria to reduction of Aflatoxins. 

Microorganism Method Incubation of medium Aflatoxin Reduction (%) Reference 

L. rhamnosus and L. lactis 

Saccharomyces cerevisiae 
HPLC Frescal cheese M1 

94 % 

100 % 
(Gonçalves et al., 2020) 

L. acidophilus (ATCC 4356) 
L. casei (ATCC 39392) 

HPLC 
Human gastrointestinal 

tract 
B1 13.86–70% 

(Tajik and Sayadi, 

2020) 

L. fermentum 

HPLC Almond butter 

B1 

G1 

50% 

58% (Hashemi and Amiri, 

2020) 
L. delbrueckii subsp. lactis 

B1 

G1 

58% 

70% 

Bifidobacterium longum 

L. mesenteroides 
L. rhamnosus 

TLC - G1 

28% after 24 h at 37 °C 
27.1% and 56% after 24h 

and 72 h at 37 °C 

56.8 after 72 h at 37 °C 

(Danial et al., 2021) 

L. acidophilus PTCC 1643 

L. rhamnosus PTCC 1637 
HPLC Yogurt B1 64.56 to 96.58% (Mosallaie et al., 2020) 

L. reuteri 
L. rhamnosus 

- Sarshir M1 72.72% 
(Bagher Hashemi and 

Amiri, 2021) 

L. helveticus ELISA Wheat bran B1 88.6%. (Zhang et al., 2021) 

Lb. plantarum MNC 21 

Lactococcus lactis MNC 24 
ELISA 

fermented sorghum-millet 

beverages 
B1 19.3–69.4 % (Byakika et al., 2019) 

L. plantarum CRD7 

L. rhamnosus CRD9 
L. plantarum CM63 

L. plantarum BM71 

L .plantarum HIF81 

ELISA In vitro Digestion Model M1 - 

52.84 ± 3.34% 

44.09 ± 5.86% 
32.61 ± 3.13% 

37.5 ± 3.5% 

48.26 ± 4.53% 

(Panwar et al., 2019) 

L. rhamnosus yoba 2012 

Streptococcus thermophilus 

C106 

HPLC Kwete 
B1, B2, 
G1, G2 

17% 
83% 

(Wacoo et al., 2019) 

Lactobacillus sp. bacteria (12 

strains) 

S. cerevisiae yeast (6 strains) 

HPLC - B1 
60% by Lactobacillus 

65% by yeast 
(Chlebicz and 

Śliżewska, 2019) 

L. reuteri, 

L. plantarum, 

L. pentosus, 
L. rhamnosus 

L. paracasei 
Saccharomyces cerevisiae 

HPLC 
ELISA 

- B1 

liver from 8.9 to 3.7 

kidneys from 11.8 to 5.9 

µg/kg 

(Śliżewska et al., 2019) 

L. plantarum ATCC 10697 

B. animalis ATCC 27672, 
B. bifidum ATCC 35914) 

ELISA 
Commercial probiotic 

yoghurts 
M1 

54.0 ± 1.95% 

49.5 ± 2.00% 
50.4 ± 1.98% 

(Sevim et al., 2019) 

L. rhamnosus HPLC - M1 60.74% (Assaf et al., 2019) 

L. rhamnosus ELISA Fermented dairy products AFs 
76% -81.6% at MRS 

medium and AIF 
(Alrabadi et al., 2018) 

L. acidophilus (EMCC 1324) 

Bifidobacterium bifidum 
(EMCC 1334) 

kluyveromyces lactis CBS 

2359 Saccharomyce 
cerevisiae ATCC 

64712) 

HPLC 
/FLD 

Coctile 
B1, B2, 
G1, G2 

8.17% - 6h 
36.12% - 12h 

44.75% - 24h 

64.72% - 48h 
93.21% - 72h 

(Hamad et al., 2018) 

Bacillus subtilis, 
L. casein 

Candida utilis 

ELISA - B1 
26.06 ± 2.52 
38.83 ± 4.24 

21.08 ± 0.12 

(Huang et al., 2018) 

L. brevis 
L. paracasei 

HPLC 
Traditional Egyptian dairy 

products 
B1 

90.4 - 96.31% 
84.65 - 90.12% 

(Gomaa et al., 2018) 

L. Plantarum 

L. acidophilus 
Bifidobacterium bifidum 

Kluyveromyces lactis 

Saccharomyces cerevisiae 

HPLC Yoghurt M1 

80.56% - 12 h 

86.64% - 24 h 

88.60% - 48 h 
90.88% - 72 h 

(Abdelmotilib et al., 

2018) 

Bifidobacterium BB-12  

L.  acidophilus DSM 20242 
ELISA - B1 

8.24% 

23.70% 
(Florina et al., 2018) 

L. acidophilus ATCC 4356 HPLC 
Gastrointestinal simulated 

medium 

Sterilized milk 

B1 
70±0.022% at sterilized 

milk 

(Sayadi and Tajik, 

2018) 

L. acidophilus 
L. plantarum 

streptococcus thermophilus 

L. rhamnosus 

HPLC 
MRS broth media and 

whole milk 
B1 

80% reduction in milk 
85% reduction 

65.7% 

44.4% 

(Marrez et al., 2018) 

L. plantarum CIDCA 83114 - Poultry feed B1 20% (Moretti et al., 2018) 

LAB species in milk ELISA 
Traditional Fermented 

Milk 
M1 57.33 and 54.04% 

(Shigute and Washe, 

2018) 

HPLC: High-performance liquid chromatography; TLC: Thin layer chromatography;  ELISA: Enzyme-linked immunosorbent assay. 

Attaching of LAB to AF is fast (more than 1 minute) and reversible (Bueno et al., 

2007). Pre-treatment of LAB with heat or acid increases the AF decontamination, 
while treatment with some of the main compounds such as sodium hydroxide, 

sodium carbonate and isopropanol have a negative effect on this connection. The 

total AFB1 molecules, which can be connected to a live bacteria is estimated to be 

more than 107 molecules (Gonçalves et al., 2020). More over AFB1, these bacteria 

also bind to other AFs, such as B2a, G1, G2, M1, M2, B2, as well as other 
mycotoxins, but not as much as AFB1(Bueno et al., 2007; Salminen et al., 2010). 

It has been confirmed that the addition of metal ions, for example, sodium chloride 

and calcium chloride, and a wide range of pH (from 2.5 to 8.5), did not significantly 
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affect the binding of AFB1, which means that electrostatic interactions and 

hydrogen bonding do not play an important role in bonding (Vázquez-Durán et 

al., 2021).  

 

CONCLUSION  

 

Biological control methods based on LAB provide a promising approach to 

controlling the growth of mycotoxins in the food chain and hence reduce the health 

risks of fungal toxins. Many studies have shown different efficacy of LAB from a 
variety of matrices in the removal of mycotoxins  (especially AF). Mainly, the 

detoxification relies on the binding of mycotoxin to the lactic acid bacteria and 
inactivation by antifungal products such as acetic acid. Most likely, it is related to 

the cell wall components (mainly peptidoglycan and exopolysaccharides) of LAB. 

In addition, studies have shown  that treatment of cells with acid and heat can 
detoxify them. Therefore, removal and reduction can be demonstrated by the 

connection of toxin to the bacterial cell wall. However, the exact mechanism for 

bonding AF to probiotics is not known, but studies have shown that AF binding is 
a reversible reaction which occur in the surface of the bacteria and it includes 

interactions with carbohydrates, peptidoglycans and to some extent the protein 

structure. It seems that  AF binding extremely related to  strain, matrix, temperature, 
and pH and incubation time. There for, most probably,  specific strains LAB is 

required against fungal contamination in different applications. Especially, strains 

of Lactobacillus genus have been studied and according to reports, potentially 
could reduce the risks of AFs hazards associated with food matrix and 

contaminated Animal feed. But still further research is needed to identify the 

potential species LAB from traditional fermented products, which produced in 
different parts of the world and testing their functionality in different matrices. The 

optimum conditions for mycotoxin detoxification and the mechanisms involved in 

mycotoxin degradation still require further research. There is a need to determine 
the diversity and suitability of LAB for different food applications based on their 

detoxification activity. It is important for future studies to combine LAB strains 

with different detoxification mechanisms in order to further enhance the efficiency 
of mycotoxin degradation. 
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