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INTRODUCTION 

 

Contemporary agricultural practice goes hand-in-hand with pesticide use. Modern 

pesticides are largely semi-volatile synthetic compounds characterised by high 
environmental mobility, poor biodegradability and eco toxicity (Doolotkeldieva et 

al., 2018; Osadebe et al., 2018a). This group of xenobiotics become pollutants 

when they persist in environmental media occurring in quantities higher than 
permissible rates. They are, thus, categorised as persistent organic pollutants 

(POPs) impacting both terrestrial ecosystems and the aquifer through leaching 
(Megson et al., 2016). Furthermore, surface run-offs quite often introduce these 

persistent pollutants to the surrounding water bodies. Evaporation from soils is also 

a concern as it could contribute to air pollution. Pesticides, as pollutants, are 
therefore, a threat to both aquatic, atmospheric and edaphic environments (Parte 

et al., 2017; Lehmann et al., 2018). The ideal pesticide should terminate target 

organisms without any impact on non-target groups; this is, unfortunately, rarely 
the case as findings reveal that only under 5 % of applied pesticides reach the target 

organisms (Javaid et al., 2016). Pesticides are considered emerging pollutants 

because they have only recently been identified as environmental pollutants. This 
is owing to their capacity for persistence in environmental media and their 

ecological and human health impacts (Ali et al., 2022).  

These xenobiotic hydrocarbon compounds are often classed based on their target 
organism or their chemical makeup. Pesticides used for the management of 

unwanted plants, insect life, rodents and fungi are referred to as herbicides, 

insecticides, rodenticides and fungicides respectively. Based on their chemical 
structures and constituent functional groups, they are described as organochlorines, 

organophosphates, organometallic compounds, pyrethroids, and carbamates 

amongst others (Arora et al., 2020). Global use of pesticides is on a steady rise; 
the USEPA (2011) estimate that roughly 2.5 billion kilogrammes of pesticides are 

used annually across the globe with about 17.9 % of that utilised in the United 

States alone. Other reports highlight that, worldwide, insecticides and herbicides 
are the most habitually employed pesticide groups making up about 29.5 % – 79.0 

% and 47.0 % – 47.5 % of global pesticide use respectively (Zhang et al., 2011; 

De et al., 2014). Paraquat dichloride is a widely used organochlorine herbicide 
whose use is strongly regulated in the United States due to toxicity though it is the 

herbicide of choice in several developing countries (Nesheim et al., 2005). 

Similarly, the organophosphorus insecticide, dichlorvos, is equally highly toxic to 
humans and other non-target species, but is used extensively in developing 

countries for the management of insects that destroy crops and plague livestock 
(Binukumar and Gill, 2010). This insecticide is currently banned in Europe (EC, 

2011) and is in the class 1B category of “highly hazardous” chemicals (WHO, 

2012) and group 2B for possible carcinogens (Cancer IAFR, 2021).  
Microorganisms, particularly bacteria, are the main detoxification and degradation 

agents within a thriving ecosystem. They are, therefore, important players in the 

management of environmental media tainted by pesticides. The key bacterial 
degraders associated with pesticide degradation belong to the Proteobacteria. 

Several studies have implicated bacterial genera such as Arthrobacter, 
Pseudomonas, Actinobacter, Vibrio, Bacillus, Sphingomonas, Novosphingobium, 

Flavobacterium, Burkholderia and Cupriavidus, amongst others, in pesticide 

degradation in both soil and water systems (Bano and Musarrat, 2004; Yan et 

al., 2007; Rani and Dhania, 2014; Javaid et al., 2016; Osadebe et al., 2018a; 

Gupta et al., 2019; Duc, 2022). Bacterial detoxification in contaminated land 

management systems are fundamental to ecosystem restoration if further impact 
on the environment is to be mitigated. The genus Bacillus of the order Bacillales 

are Gram positive, endospore forming rods with a remarkable capacity to 

proliferate in high densities even under somewhat adverse environmental 
conditions. They are known to synthesise an array of metabolites like antibiotics, 

amino acids, pheromones and biosurfactants that have extensive applications in 

industry, environment, health and agronomy. Bacilli demonstrate a competence for 
degradation of an array of compounds whether natural and synthetic (Caulier et 

al., 2019; Patel and Gupta, 2020). They have been linked to the utilisation and 

breakdown of antibiotics, detergents, petroleum hydrocarbons, lubricating oils, 
explosives and dyes in several studies (Singh and Singh, 2016; Osadebe et al., 

2018b; Osadebe et al., 2018c; Sultana et al., 2021; Fareed et al., 2022; Monga 

et al., 2022; Zhang et al., 2022). These reports highlight the importance of bacilli 
in environmental detoxification and bioremediation.  

The current study sought to establish the capacity of axenic and mixed cultures of 

Bacillus to utilise selected pesticides as their sole carbon source under aerobic 
conditions and eliminate them from pesticide-tainted media. The pesticides tested 

were the organophosphate insecticide, dichlorvos (with chemical name 2,2-

dichlorovinyl dimethylphosphate, C4H7Cl2O4P) and the organochlorine herbicide, 
1,1-dimethyl-4,4-bipyridinium dichloride, C12H14Cl2N2 (regularly referred to as 

paraquat or paraquat dichloride). The pesticides were tested at levels akin to their 

recommended field application rates.  
 

Pesticide use is an integral part in global agricultural practice, however, these chemicals have recently been identified as emerging 

pollutants that impact on ecosystem health and sometimes require remediative intervention. This study assessed the biodegradative ability 
of species of Bacillus on the organochlorine herbicide, paraquat and the organophosphorus insecticide, dichlorvos. The Bacillus isolates 

were identified based on their genomic, biochemical and morphological characteristics while the ability of the isolates to degrade the 

pesticides was determined by monitoring changes in optical density, pH, total viable count and pesticide concentration in in vitro systems 
over an 18-day period using pesticide-modified mineral salts broth. The two Bacilli isolates were identified as Bacillus crassostreae and 

Bacillus niabensis. The organochlorine herbicide was more readily utilised by the axenic Bacillus isolates and their mixed culture than 

the organophosphorus insecticide as evidenced by variations in turbidity and counts. Biodegradation was more effective with the mixed 
culture than with the axenic cultures. Pesticide degradation levels of 64.26 % – 93.70 % and 70.43 % – 98.20 % were observed for the 

insecticide and herbicide respectively for both the bacilli and their mixed culture as revealed by gas chromatography analysis. The 

degradation efficiencies of the two bacilli for both dichlorvos and paraquat showed significant differences from each other and from the 
mixed culture at 95% confidence interval. The study established the potential of Bacillus crassostreae, Bacillus niabensis and their mixed 

culture to be employed as inocula in the detoxification of pesticide-contaminated environmental media. 
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MATERIAL AND METHODS 

 

Sample Collection 

 

The pesticides used was obtained from the local town market in Port Harcourt 

metropolis, Rivers State, Nigeria while the Bacillus species used in the study were 
isolated from crude oil agricultural soil in Bomu area of Ogoniland, Nigeria using 

the composite sampling approach. Samples were collected from the soil surface up 

to around 20 cm using an auger. The soil samples were conveyed to the laboratory 
in sterile black sample bags. 

 
Isolation of Bacillus species  

 

Isolation was done using nutrient agar (Merck, Germany). A portion of the soil 
composite was suspended in sterile normal saline (1:10 w/v) and shaken 

vigorously. The settled suspension was then serially diluted and aliquots from 

selected dilutions were inoculated unto sterile medium with incubation for 24 h – 

48 h at approximately 30 ± 2 °C. Discrete colonies were purified by streaking 

technique on fresh media. The pure isolates obtained were stored on media slants 
until required for further analysis (Cheesbrough, 2006). 

 

Preliminary Characterisation of the Isolates 

 

The isolated bacteria were characterized based on their morphological, 

microscopic, and biochemical properties as proposed by Cheesbrough (2006) and 
Holt et al. (1994) in order to putatively identify the Bacillus spp. 

 

Confirmatory Identification of Bacillus Isolates via Sanger Sequencing 

 

The identities of the two isolates ascertained as Bacillus spp. were confirmed via 

genomic analysis. The cells of pure isolates cultivated in Luria-Bertani medium 
were harvested by centrifugation and the bacterial DNA extracted using ZR 

fungal/bacterial DNA Miniprep (Zymo research, USA) as outlined by the 

manufacturer. Following DNA extraction, the concentration and purity of the DNA 
obtained was established using the Nanodrop 2000 spectrophotometer while the 

integrity of the DNA sample was established by quantifying and visualizing the 

DNA using a UV transilluminator on 1% w/v agarose gel.  The 16S region of the 
rRNA genes of the isolates were amplified using the 27F and 1492R forward and 

reverse universal primers on GeneAmp® PCR System 9700 (Applied Biosystems, 

USA) at a final volume of 50 μl. The PCR parameters were: initial denaturation at 
94 °C for 5 minutes, followed by 36 cycles of denaturation at 94°C for 30 s, 

annealing at 56 °C for 30 s, elongation at 72 °C for 45 s and then final elongation 

at 72°C for 7 minutes. Hold temperature was 10 °C. The amplified PCR products 
were resolved on a 1.5 % agarose gel at 120V for 15 minutes then visualized using 

a UV transilluminator. Sequencing was done using the BigDye® Terminator 117 

v3.1 kit on 3510 ABI sequencer (Inqaba Biotechnological, South Africa) (Nasser 

et al., 2017). 

Sequence identification entailed checking the 16S rRNA sequences obtained for 

each test isolate against the National Centre for Biotechnology Information (NCBI) 
database using the basic local alignment search tool (BLAST) analysis.  Blast hits 

with e-values closest to 0.0 were concluded to be closest to the isolate and were 

used for alignment and assembly of the phylogenetic tree. 
 

Biodegradation Assay - In Vitro Pesticide Degradation in Mineral Salts Broth 

(MSB) 

 

The two pure isolates of Bacillus spp. obtained and their mixed culture were 

subjected to a biodegradation assay to assess their capacities for pesticide 
utilisation when it is available as the sole carbon source. Bacterial standard 

enrichment cultures consisted of the axenic isolates introduced into 100 ml mineral 

salts broth containing the specific test pesticide as the sole carbon source. The 
inoculated broths were incubated at room temperature for 24 h. 

The technique outlined by Okpokwasili and Okorie (1988) was adapted for the 

biodegradation assay using pesticide supplemented MSB in replicated 250 ml 
Erlenmeyer flasks at a concentration of 20 μg ml-1 which represents roughly 2.0 

kg/ha. This is over the recommended field application rate of 0.25 – 1.5 kg/ha for 

both pesticides. The flasks were then inoculated with about 1 ml of 24 h bacterial 
culture (optical density of 0.8). Incubation was at 30 °C on a rotary shaker for 18 

days with monitoring for pesticide concentration, viable bacterial counts and 

turbidity of the medium at regular intervals. The initial pH of the set-up was 7.0. 
Control studies consisted of uninoculated pesticide-laden MSB flasks.  

 
Determination of Growth by Turbidimetry  

 

After a 24 h acclimatisation period, known portions of the MSB from the 
biodegradation assay set-ups were extracted at regular intervals and the optical 

density determined at 540 nm using a UV Visible Spectrophotometer. The 

uninoculated MSB served as the standard. 
 

 

Enumeration of Bacillus spp. in the Assay Set-ups 

 

Roughly 0.1 ml aliquots were collected from the set-ups and plated out unto sterile 

nutrient agar with incubation at 30 °C for 24 h – 48 h. Only plates with counts of 

30 – 300 colonies were selected for determination of counts. Plate counts were 

done at the end of the incubation period using an automated digital colony counter 
(Balance Instrument Co., China). Plates with counts in excess of 300 colonies were 

discarded. 

 
Determination of Pesticide Content Using Gas Chromatography-Mass 

Spectrometry (GC-MS)  

 

The residual pesticide concentrations during the study were monitored to establish 

biodegradation. About 5 ml of MSB from the set-ups containing the pesticides and 
the bacterial inocula was centrifuged and the supernatant obtained analysed using 

GC-MS (Agilent 6890/ 5973N, USA).  The sample was first dehydrated using 

anhydrous sodium sulphate then the pesticide residue was extracted using 30 ml 
dichloromethane via mechanical agitation. The organic layer was concentrated in 

an evaporator and mixed with cyclohexane. The extract was eluted using pentane 

in a capillary column system. The eluted sample was allowed to stand overnight at 
room temperature in a fume cupboard for evaporation to take place. An injection 

volume of 3 μl was used. Operating conditions were as recommended by the 

manufacturer. The pesticide concentrations were established at the onset and at the 
end of the 18-day study. The pesticide removal efficiency for each isolate and the 

mixed culture was determined as outlined in Equation 1: 

 

Removal Efficiency (%)  =      
Ci−Cf

Ci
    x   100               Eq. (1) 

 

Where: Cf – Residual pesticide concentration; Ci – Initial pesticide concentration 

 

Data Analysis 
 

The data obtained in the study was analysed statistically using Microsoft Excel® 

2016 and SPSS® version 23. Basic statistical distribution analysis was carried out 
on the data. One and two factor ANOVA evaluated the relationships between the 

pesticide removal efficiencies amongst the two isolates and the mixed culture as 

well as within groups comparing removal efficiencies for each isolate and the 
mixed culture on the insecticide and herbicide. Comparisons were done at 95% 

confidence interval. 

 
RESULTS AND DISCUSSION 

 
Identity of isolates 

 

The two isolates were recognised as Bacillus spp. from their biochemical and 
morphological properties (Table S1 in supplementary files). Their identities were 

established as Bacillus niabensis (isolate code: A4) and Bacillus crassostreae 

(isolate code: A7) based on results from DNA sequencing and phylogenetic 
analysis (Figure 1). The nucleotide sequences obtained for the isolates were 

registered in the NCBI GenBank® under accession numbers MF547449 and 

MF547451 for B. niabensis and B. crassostreae respectively.  
 

 

 
    
     0.0010 

 

Figure 1  Phylogenetic tree based on 16S rRNA gene sequences showing the 
evolutionary relationships between the two isolates of Bacillus sp. The black 

circles indicate the isolates from the current study 

 
Growth profile, pH and removal efficiency of the isolates and their mixed 

culture in pesticide-tainted medium 

 
The growth curve studies using turbidimetry and plate counts (Figures 2 and 3) 

revealed that while both species and the mixed culture were able to utilize the 

pesticides as a carbon source and grow extensively in the tainted broths,  
B. crassostreae showed more proficiency in both the herbicide and the insecticide. 

The mixed culture consisting of the two bacilli exhibited a steady rise in optical 
density (representing cell density) till the conclusion of the investigation while both 
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axenic cultures peaked between days 6 and 9 and then entered a steady decline. A 

similar trend was noted for the bacterial growth curves.  No distinct lag phase was 

observed in the growth profiles. 

 

 
A 

 
B 

Figure 2  Changes in optical density (O.D.) of the mineral salts broth inoculated 

with the species of Bacillus and their mixed culture for (a) the organophosphate 

insecticide, dichlorvos and (b) the organochlorine herbicide, paraquat during the 
biodegradation assay. Values are means of triplicates. Bars represent the standard 

error. 
 

While the mixed culture seemed to remain in the exponential phase of growth on 

both the insecticide and the herbicide till the end of the study, active growth for the 
axenic cultures of B. niabensis and B. crassostreae peaked on day 6 for the 

insecticide (dichlorvos) and then displayed a steady decline signifying the onset of 

the death phase of the growth cycle. With the herbicide, B. crassostreae continued 
to show increased viable cell count as contact time increased, up till the end of the 

study while counts were observed to decline from day 9 with B. niabensis. By the 

end of the study, counts of 3.51 log CFU/ml, 3.57 log CFU/ml and 4.52 log 
CFU/ml were obtained for B. niabensis, B. crassostreae and the mixed culture 

respectively for dichlorvos. For paraquat, B. niabensis, B. crassostreae and the 

mixed culture had terminal counts of 4.23 log CFU/ml, 4.27 log CFU/ml and 4.92 
log CFU/ml respectively. These results indicated that B. crassotreae was a more 

efficient degrader than B. niabensis. 

 
A 

 
B 

Figure 3 Changes in total viable bacterial counts (TVBC) of the mineral salts broth 

inoculated with the species of Bacillus and their mixed culture for (a) the 

organophosphate insecticide, dichlorvos and (b) the organochlorine herbicide, 
paraquat during the biodegradation assay. Values are means of triplicates. Bars 

represent the standard error. 

 
All the set-ups demonstrated comparable trends in pH profile. During 

biodegradation of dichlorvos, the pH of the system for the bacilli and their 

consortium dropped from neutral to somewhat acidic conditions while for 
paraquat, the pH remained relatively neutral till day 6 then showed slight 

tendencies towards alkalinity rising to about 8.5 – 8.6 on average by the end of the 

study (Figure 4). The organophosphorus insecticide proved to be more recalcitrant 
as depicted in Figure 5. Pesticide degradation levels of 64.26 % – 93.70 % and 

70.43 % – 98.20% were observed for the insecticide and herbicide respectively for 

both the bacilli and their mixed culture with the consortium being the most efficient 
degrader. The bacterial consortium almost completely eliminated the pesticides in 

the in vitro systems. The consortium was most efficient displaying mean removal 

efficiencies of up to 93.7 % for dichlorvos (organophosphorus insecticide) and 98.2 
% for paraquat (organochlorine herbicide). 

 

 
A 

 
B 

Figure 4 Changes in pH of the mineral salts broth inoculated with the species of 

Bacillus and their mixed culture for (a) the organophosphate insecticide, dichlorvos 
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and (b) the organochlorine herbicide, paraquat during the biodegradation assay. 

Values are means of triplicates. Bars represent the standard error. 

 

 
 

Figure 5  Removal efficiency of the organophosphorus insecticide and 

organochlorine herbicide by the Bacillus isolates and their mixed culture during 
the study. The bars represent the standard error. 

 

Statistical comparisons 

 

Output from Levene’s test indicated homogeneity of variance across board. With 

p values less than 0.05, the removal efficiencies of B. niabensis and B. crassostreae 
for both dichlorvos and paraquat showed significant differences from each other 

and from the mixed culture at 95 % confidence interval. For both isolates as well, 

there were statistically significant differences when comparing their removal 
efficiencies for dichlorvos and paraquat; however, for the mixed culture, the 

removal efficiencies for dichlorvos and paraquat did not differ significantly from 

each other. 
 

DISCUSSION 

 
Only a diminutive fraction of soil bacteria have capacity for pesticide degradation. 

For the insecticide vetox-85, a previous study showed that only 0.32 % of soil 

microorganisms were utilisers (Osadebe et al., 2018a). Doolotkeldieva et al. 

(2018), in contrast, found pesticide-degrading bacteria to make up 32% – 47 % of 

autochthonous organisms in a soil ecosystem in Kyrgyzstan. In spite of this, several 

species of Bacillus have been associated with pesticide degradation in different 
ecosystems. Research has demonstrated that pesticides like diazinon, chlorpyrifos, 

endrin; parathion and dichlorodiphenyltrichloroethane (DDT) can be readily 

utilised by Bacillus spp. (Verma et al., 2014; Upadhyay and Dutt, 2017; Huang 

et al., 2018; Osadebe et al., 2018a). Bacillus was noted as one of several resilient 

bacterial isolates from dichlorvos- and paraquat-treated soils (Ataikiru et al., 

2020; Adigun et al., 2022) even though Adigun et al. (2022) confirmed a drop in 
soil microbial populations following the application of dichlorvos. Strains of B. 

aryabhattai were isolated from soil impacted by paraquat in investigations in 

Thailand (Inthama et al., 2021). Lamoreaux and Newland (1978) as cited in 
Okoroiwu and Iwara (2018) linked the removal of dichlorvos in soil to the 

presence of B. cereus with removal levels of 50 % in 3.9 days in soil and 49 % in 

4 days when the herbicide was included as the sole carbon source in MSM. Marine-
derived B. niabensis has been associated with the degradation of the surfactant, 

benzyldimethyl hexadecylammonium by about 90 % in 7 days when it was present 

at relatively low concentrations (Bassey and Grigson, 2011). 
The greater proficiency of the isolates and the mixed culture in the utilisation of 

the organochlorine herbicide, paraquat, is fairly unusual as chlorinated pesticides 

are well known to inhibit bacterial cell viability and impede cell metabolism even 
under structured laboratory conditions (El-Bestaway et al., 2014). The microbial 

growth cycle predicts the biodegradation rates of the substrate such that optimal 

biodegradation levels typically occur when microbial counts associated with the 
substrate are greatest (Ojo-Omoniyi, 2013). Based on the proficiency of growth 

and cell density (optical density) obtained in the current study, the mixed culture 
was the most effective degrader followed closely by B. crassostreae. The high rate 

of pesticide removal obtained in the current study is supported by similar studies 

on pesticide elimination by species of Bacillus. The B. niabensis and B. 
crassostreae isolates from the present study have proved to be equally as effective 

as those in comparable studies. As seen with the mixed culture in the current study, 

immobilised cells of B. subtilis alongside P. aeruginosa removed up to 98 % of 
paraquat in in vitro investigations (Jindakaraked et al., 2021). Duc (2022) 

established a 97.5 % degradation of the insecticide, cabofuran, by a strain of 

Bacillus immobilised on rice straw. B. cereus proved able to utilise cypermethrin, 
imidacloprid, fipronil and sulfosulfuron as its sole carbon source in MSB with 

biodegradation levels of 94 %, 91 %, 89 % and 86 % respectively obtained during 

a 15-day period (Gangola et al., 2021). Likewise, degradation of cypermethrin in 
another 15-day study by Bacillus sp. resulted in elimination of around 85 % of the 

pesticide (Bhatt et al., 2019) while B. licheniformis removed up to 64 % of 

cypermethrin after 5 days in field-based investigations (Dang et al., 2015).  
Akin to the present study, El-Bestawy et al. (2014) also confirmed improved 

pesticide biodegradation with increasing contact time. Contact time is considered 

an important function of pesticide degradation by microorganisms alongside 

concentration. The presence of microbial groups with the metabolic capacity for 

degradation of hydrocarbon compounds is fundamental to the environmental 

biodetoxification process. Previous exposure and adaptation could play a role in 

the enhanced pesticide removal obtained in the present study. The isolates used in 

the current study were obtained from crude oil impacted soil and, thus, have a 
history of exposure to various groups of hydrocarbons. Microorganisms will 

typically adapt to measured and regular contact to different groups of substances.  

Adaptation such that subsequent exposure to similar categories of those 
compounds would result in more rapid and efficient degradation as the organisms 

already possess the requisite catabolic enzymes for mineralisation. The more 
regular the exposure, the more superior its degradation competence and skill at 

utilising present and imminent hydrocarbon compounds upon contact (Bakar et 

al., 2022). Microbial species breakdown xenobiotics to which they have been 
previously exposed more readily than they would “new” compounds (Biello, 

2015).   

The results of several similar studies confirm this assertion that previous contact 
with a specific group of compounds enhances the capacity of degrading 

microorganisms to utilise similar compounds upon future exposure. One 

comparable study found that species from sediments with chronic petroleum 
contamination showed degradation rates exceeding 10 – 400 times those seen with 

microorganisms from pristine sediment. The experienced hydrocarbon degrading 

bacteria has been known to transfer this advanced ability for hydrocarbon 
degradation to subsequent generations via genetic adaptation. Certain species of 

Vibrio have been extensively studied for exhibition of this trait (Chaillan et al., 

2006; Biello, 2015). In another study, 55 % pyrene degradation was recorded when 
using a suspension of bacterial cells previously cultivated in pyrene-laden media 

compared to 1 % obtained with the autochthonous previously unexposed species 

(Laleh et al., 2006). Similarly, greater metabolism was noted when the inoculum 
was enriched in media containing crude oil as carbon source prior to 

biodegradation testing in contrast to those species cultivated using plain 

unmodified nutrient broth (Chaîneau et al., 2005). 
The enhanced biodegradation of the mixed culture in the present study is somewhat 

anticipated. A consortium of organisms will typically give better substrate 

utilisation results than pure cultures. Complete biodegradation requires a 
community of species to achieve. Each individual species has a niche range of 

organic compounds it can utilise for energy. A mixed population would, therefore, 

provide individuals with metabolic capacity for different groups of compounds 

working together to ensure that the biodegradation proceeds at maximum levels. 

Each species plays a unique role in hydrocarbon transformation process. Several 

studies conclude that each individual in a mixed culture involved in 
biodegradation, depends on the presence of the other individuals to survive and 

effectively function in their niche. An eight-strain consortium with six genera 

effectively eliminated hydrocarbon compounds from environmental media, 
however, only five members of the consortium were culturable as axenic forms on 

the different hydrocarbon compounds and the efficiency of biodegradation 

dropped drastically with the exclusion of three selected organisms from the 
association (Pizarro-Tobias et al., 2014). The interaction within a microbial 

community or consortium during biodegradation is relatively unclear, it has been 

opined that the different microorganisms function in synergy with one member 
eliminating the toxic metabolites produced by its counterpart. Often times, one 

species has the capacity to fully metabolise the by-products resulting from the 

partial degradative activities of another member (Cerqueira et al., 2012; 

McGenity et al., 2012). 

The observed variation in the pH of the in vitro systems may be due to the 

introduction of degradation by-products whether acidic in the case of the 

insecticide, dichlorvos, or alkaline as seen in the set-ups containing the herbicide, 

paraquat, in the present study. Zhang et al. (2021) have described dichloroacetic 

acid and ethanol as products of aerobic bacterial degradation of dichlorvos; these 
could result in a drop in pH in a closed system. The drop in pH, in turn, impacts 

negatively on further bacterial growth and the degradative activities of the Bacillus 

isolates. This would explain the lower degradation efficiency seen with the 
organophosphorus insecticide. Changes in pH from optimum levels could impede 

further degradative activities on the part of the bacteria. The optimal pH for 
paraquat degradation and the growth of the degrader, B. aryabhattai was 7.0 at 30 

°C (Inthama et al., 2021). The pH levels impact on both microbial activity and the 

availability of ions in the water. Dwivedi (2012) described pH as the major factor 
influencing the adsorption of contaminant molecules and further maintained that 

the particle surface charge and surface accessibility also hinged on the pH. 

Furthermore, as pH rises, the availability of micronutrients such as phosphorus and 
nitrogen derivatives, exchangeable sodium and potassium, magnesium and 

calcium declines, in contrast, as pH decreases so does nitrate and chloride 

availability (Dhankhar and Guriyan, 2011). Biodegradation rates are often 
strongest at neutral pH levels; the exception being the extremophiles (Hazen et al., 

2016). Most bacteria are incapacitated under acidic conditions hence fungi 

constitute the chief players during biodegradation in acidic soils owing to their 
tolerance of lower pH levels (Obahiagbon et al., 2014). The acidic conditions 

observed during the biodegradation of the insecticide in the present study could 

have played a role in the reduced elimination of the insecticide from media 
compared to the herbicide.  
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Another possibility for the diminished removal efficiency seen with the insecticide 

compared to the herbicide could be that dichlorvos was toxic to the test bacteria 

perhaps owing to the mode of action of these chemicals. Insecticides will often 

function as enzyme and cellular pathway inhibitors. For instance, they are known 

to interrupt acetylcholinesterase, voltage-gated chloride channel and the 

acetylcholine receptor systems; similar systems are also present in bacteria. 
Herbicides in contrast, block more plant-specific pathways like photosynthesis and 

synthesis of carotenoid, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase and 

aromatic and branched chain amino acids essential to only plants (Casida, 2009; 

Combarnous, 2017). Paraquat, in particular, functions by inhibiting 

photosynthesis within the chloroplast (Qian et al., 2009) while dichlorvos like 
most insecticides blocks acetylcholinesterase function (Binukumar and Gill, 

2010).  

 

CONCLUSION 

 

The pesticides were shown to be relatively biodegradable. Bacillus niabensis and 
Bacillus crassostreae and their mixed culture were able to remove the 

organophosphate pesticide, dichlorvos and the organochlorine herbicide, paraquat 

from mineral salts broth in 18-day in vitro investigations. The mixed culture 
displayed the greatest removal efficiency of 93.7 % and 98.2 % for dichlorvos and 

paraquat respectively. Of the two bacilli isolates, B. crassostreae proved to be the 

stronger degrader for both pesticides studied having removal efficiencies 
approximately 19 % greater than those of B. niabensis for both dichlorvos and 

paraquat. The study established that B niabensis, B. crassostreae and the mixed 

culture have capacity for detoxification of pesticide-tainted environmental media. 
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