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INTRODUCTION 

 

Probiotics are live, non-pathogenic microbes that are crucial for maintaining 

human health. Yeast has been considered as an important probiotic in human 

microbiome. Since the 1950s, probiotic yeast (Saccharomyces boulardii) has been 
available for purchase, and clinical research using it started in 1977 convincingly 

showed its nonpathogenic nature for safe usage (McFarland, 2010). Mangosteen 

and lychee fruits were used to isolate Saccharomyces cerevisiae subtype in 1923, 
which was then dubbed Saccharomyces cerevisiae var. boulardii (Altmann, 

2017). This strain could provide better protection against microbial infections as 

well as toxic compounds which could prevent intestinal epithelial cell damage 
(Capece et al., 2018). Many studies indicate the potential properties of S. boulardii 

to treat various GI tract disorders, especially caused by pathogens like 

Helicobacter pylori, Salmonella, and Clostridium difficile infections (Hudson et 

al., 2016). A well-known probiotic yeast called S. boulardii has been utilised to 

treat numerous GI tract illnesses in people (Sen and Mansell, 2020). There is a 

scope to improve probiotic attributes of S. boulardii using Saccharomyces 
cerevisiae genetic engineering tools (Pais et al., 2020). S. boulardii's phylogenetic 

clusters are closely related to strains of S. cerevisiae (Khatri et al., 2017). The 

prevalence of Saccharomyces strains in the human GI tract is obvious given that 
live S. cerevisiae and other related organisms have been intentionally consumed 

by humans for thousands of years in the form of bread, beer, and other fermented 

foods and beverages. However, only a few strains of S. cerevisiae have shown 
health benefits in humans (Fernandez-Pacheco et al., 2018). Saccharomyces 

species are well characterized as probiotics and used to treat various disorders 

(Nash et al., 2017; Sambrani et al., 2021). S. cerevisiae BEL 9 and S. cerevisiae 
BEL 1 were isolated from lychee fruits which indicated good viability at various 

stress conditions (Khan et al., 2020). Similarly, S. cerevisiae C41 strain was 

isolated from Tibicos and identified as potential probiotics (Romero-Luna et al., 

2019). Saccharomyces cerevisiae isolated from caterpillar frasses showed 

significant probiotic properties (Khisti et al., 2019). 

Diutina rugosa 14 and Diutina rugosa 8 were found to have potential as 
biotechnological probiotics after being isolated from pistachio fruits (Fernández-

Pacheco et al., 2021). The advantages of probiotic yeasts include 

immunomodulation through general gut microbiota maintenance through precise 
interactions (Lai et al., 2019). Debaryomyces, Candida, Pichia, Candida, 

Hanseniaspora, Kluyveromyces, and Metschnikowia are known as possible 
probiotic yeasts. The size of yeasts, which is 10 times bigger than that of bacteria 

and makes up less than 0.1 percent of the microbiota in the gut, may allow for 

better coverage of probiotic yeast colonization throughout the GI tract (Hsiung et 

al., 2020). To make fermented foods, yeast strains have been utilized as a starter 

culture. During this fermentation process, probiotic may produce secondary 

metabolites viz. fatty acids, esters, acetates and alcohols that gives better aroma to 

the foods and beverages. This enhances the overall quality of the foods that have 

undergone fermentation. Nowadays, starter cultures should be made from 
practically all of the yeast species in the genus Saccharomyces (Arevalo-Villena 

et al., 2017). According to Agarbati et al. (2020), yeast strains isolated from dairy 

products and natural habitats were recognized as probiotics from the genera 
Kluyveromyces, Brettanomyces, Saccharomyces, Rhodotorula, and Pichia. The list 

of potential probiotic yeasts is constantly being expanded, but S. boulardii is still 

the only probiotic yeast with a regulatory framework and widespread commercial 
acceptability. Table 1 shows the list of probiotic yeasts reported by various 

workers.  

 
Table 1 List of Probiotic yeast strains  

S. No.  Probiotic yeast  References 

1. 
S. cerevisiae and S. 

cerevisiae var. boulardii    

Diosma et al., 2014; Gil -

Rodriguez et  al. 2015 

2. Cryptococcus spp. Aloglu et al., 2016 

3. Candida famata                                                                                  Al -Seraih et al., 2015   

4. C. tropicalis Ogunremi et al., 2015   

5. Debaryomyces hansenii                               Ochangco et al., 2016        

6. Issatchenkia orientalis                          Ogunremi et al., 2015 

7. 
Kluyveromyces 

lactis                                                     
Binetti et al., 2013 

8. 
Kluyveromyces 
marxianus                                                     

Binetti et al., 2013; Diosma et al., 
2014; Smith et al., 2015 

9. 
Metschnikowia 

gruessii                                                                         
Smith et al., 2015    

10. Pichia jadinii                                                Buerth et al., 2016 

11. Pichia kluyveri                                                                                         Ogunremi et al., 2015 

12. P. kudriavzevii                                        Ogunremi et al., 2015 

13.  P. pastoris                                                     Correa Franca et al., 2015  

14. P. guilliermondii                                               Bonatsou et al., 2015 

15. Wickeramomyces anomalus                           Bonatsou et al., 2015 

 

Recently, the use of yeast as a probiotic has received more attention. More research 
is needed to discover the new yeast species with potential probiotic properties 

towards the benefit of the human.  

 

 

Due to the enormous benefits for human health, probiotics have gained popularity in the current era of science and have received a lot of 

public interest recently. Many bacterial strains have been used as probiotics for commercial applications. For a long time, the only yeast, 

Saccharomyces cerevisiae var. boulardii, was referred to be a probiotic. Interest in the probiotic potential of different yeast strains has 

grown in recent years. The purpose of the present review is to explore the updated information on the efficacy of various yeast strains as 

probiotics for human welfare. 
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YEASTS IN FERMENTED FOOD PRODUCTS SHOWING PROBIOTIC 

POTENTIAL 

 

The probiotic yeast strains Wickerhamomyces anomalus, Nakazawaea molendini-

olei, N. wickerhamii, Yamadazyma terventina, Candida adriatica, and Candida 

diddensiae have been isolated from a variety of natural sources, including human 
breast milk, camel raw milk, virgin olive oil, and rotten fruits (apple, grapes, 

strawberry) and vegetables (cauliflower, brinjal, tomato, cucumber) (Ahmad et al., 

2019; Zullo and Ciafardini, 2019). Many fermented foods such as yogurt, kimchi, 
sauerkraut, kombucha, natto, kefir, pickles, tempeh, green olives, miso, cottage 

cheese and other type of cheeses contain probiotic yeasts. Some of the foods like 
beer, chocolate, sourdough bread, soy sauce and wine also contain live probiotics. 

Kluyveromyces lactis, S. unisporus, and S. boulardii are probiotic yeasts found in 

kefir grains (Abraham et al., 2019). Some foods that have a big impact on the 

health of the host use these helpful bacteria as additives (Lokhande et al., 2019). 

Figure 1 shows the list of fermented food sources containing yeasts having 

probiotic potential.  

 

NOVEL CHARACTERISTICS OF PROBIOTIC YEAST 

 

Novel characteristics of probiotic strains include adhesion ability, auto-

aggregation, coaggregation, cell surface hydrophobicity, GIT tolerance, 
cholesterol assimilation, exopolysaccharide production (EPS), production of killer 

toxins, enzymes, antimicrobial substances, and metabolites. 

 

 

 
 

Figure 1 Probiotic yeasts in various fermented foods 

 

Auto-aggregation and Co-aggregation ability 

 

Aggregation between similar microbes called auto- aggregation and in case of co-

aggregation, different strains will adhere together. Probiotic strains with the ability 
to aggregate improved the development of biofilm to defend the host against 

pathogen invasion through self-recognizing surface components, such as proteins 

and exopolysaccharides, collectively known as auto agglutinins (Trunk et al., 

2018). It was discovered that cell surface hydrophobicity was connected to the 

capacity to co-aggregate with pathogens (Son et al., 2017). 

Five probiotic yeasts, B. custersianus VIT-MN05, S. fibuligera VIT-MN04, L. 
starkeyi VIT-MN03, K. lactis VIT-MN02, and Y. lipolytica VIT-MN01, were 

examined utilising in vitro techniques for their potential for adhesion, 

autoaggregation and coaggregation, GIT tolerance, and cholesterol assimilation 
(Ragavan and Das, 2017a). This study showed 92 % auto-aggregation ability for 

probiotic yeast L. starkeyi VIT-MN03. There are reports on probiotic yeasts such 

as S. cerevisiae, W. anomalus, Y. lipolytica, and P. barkeri which showed 80% 
auto-aggregation ability (Suvarna et al., 2018). Yeast strains belonging to 

Dekkera, Hanseniaspora, Kazachstania, Kluyveromyces, Kwoniella, 

Saccharomycopsis, Saccharomyces, Torulaspora, Wickerhamomyces, and 
Zygosaccharomyces isolated from kefir milk showed 95% autoaggregation ability 

(Hsu and Chou, 2021). 
It was discovered that probiotic yeasts can co-aggregate with the pathogens 

Salmonella sp. and Klebsiella sp. Limosilactobacillus fermentum, a probiotic 

bacteria, had the highest capacity for co-aggregation, while L. starkeyi VIT-MN03 
had capacities of 90% and 92% for co-aggregation of Klebsiella sp., and 

Salmonella sp. respectively. However, several yeast strains shown high co-

aggregation ability (>80%) for both viruses (Ragavan and Das, 2017a). S. 
cerevisiae LPBF3, a probiotic yeast isolated from honey-based kefir beverage, 

failed to aggregate with pathogenic E. coli strain and only had a 22% coaggregation 

ability with S. aureus pathogen (de Oliveira Coelho et al., 2019).  

Surface hydrophobicity  

 

The tendency of microbial cells to bind different surfaces (biotic and abiotic) is 

affected by the hydrophobicity of the cell surface. LAB with strong aggregation 
abilities has a relatively broad surface hydrophobicity, giving them an added 

benefit for attachment (Chen et al., 2018). According to percent adhesion values, 

the degree of hydrophobicity was assigned as strongly (>50 %), moderately (20 % 
–50 %), and weakly (20 %) hydrophobic (Aziz et al., 2019). Similar to probiotic 

bacteria P. mirabilis (90 percent), probiotic yeast L. starkeyi VIT-MN03 displayed 

a high hydrophobicity index (Ragavan and Das, 2017b). Probiotic yeasts 
including Kluyveromyces marxianus JYC2614, S. cerevisiae, and S. boulardii, 

have been reported to have cell surfaces that are respectively, 68%, 73%, and 86% 

hydrophobic (Hu et al., 2018; Hsiung et al., 2020).  
 

GIT tolerance 

 
The survival ability of microbes under simulated GIT has generally been 

considered a key feature in selecting potential probiotics. The probiotic strain 

should tolerate stomach acid followed by higher concentrations of bile salt in the 
GIT. This characteristic feature is crucial for maintaining the viability and survival 

rate of probiotics in a harsh GIT environment (Kizerwetter-Świda and Binek, 

2016). Probiotic yeast strains such as Yarrawia lipolytica, S. cerevisiae, 

Debaryomyces occidentalis, Debaromyces hansenii, and Cryptococcus sp. were 

reported for better survival at acidic and GIT conditions (El-Baz et al., 2018). 
Probiotic yeast Wickerhamomyces anomalus HN1 showed 61.5 % viability and 

other yeast strains such as Pichia manschuria, Candida tropicalis, and S. 

cerevisiae, exhibited significant GIT tolerance after 2 h incubation (Helmy et al., 

2019). Similar reports were noted for probiotic yeasts S. unisporus and 

Kluyveromyces lactis (Gut et al., 2019).  
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Cholesterol assimilation 

 

Numerous mechanisms, such as bile salt hydrolase activity, the synthesis of 

inhibitory chemicals, and cholesterol assimilation, are involved in the control of 

cholesterol (Tomaro-Duchesneau et al., 2014). The study made by Ragavan and 

Das (2017b) demonstrated the cholesterol assimilation ability of probiotic yeasts. 
Probiotic yeast K. lactis VIT-MN02 showed a 90% cholesterol assimilation rate 

after 24th h of incubation. The probiotic yeasts viz. S. boulardii, P. kudriavzevii, 

and S. cerevisiae were also reported for cholesterol assimilation which ranges from 
1% to 80% (Syal and Vohra, 2013). In another study, yeast strains viz. 

Cryptococcus humicola, Cryptococcus curvatus, Candida kefyr, and S. cerevisiae 
832 were noted for increased cholesterol removal (<80%) whereas Monascus 

purpureus CBS was observed for only 2.75 % to 9.27% cholesterol assimilation 

after 72 hours incubation (Nguyen et al., 2020). Saccharomyces strains showed 
cholesterol assimilation ranging from 78.52 to 88.92% and non-Saccharomyces 

strains isolated from milk showed only a 45.7% assimilation rate (Fernández 

Pacheco et al., 2021).  
 

Exopolysaccharide Production (EPS) 

 
Exopolysaccharides (EPS) are extracellular macromolecules excreted by microbes 

that form a slimy layer around the cell which helps to bound the cell tightly on the 

surface of the GIT. Production of EPS from probiotics gained more attention due 
to its applications as drug delivery, bio-flocculants, and bio-absorbents (Silva et 

al., 2019). Probiotic EPS are used to treat various human disorders like 

inflammatory bowel diseases, cardiovascular diseases, obesity, autoimmune 
diseases, and especially for colon cancer and gastric ulcers (Delgado et al., 2020; 

Saadat et al., 2020). S. cerevisiae, Candida sp., and Pichia sp., three probiotic 

yeasts, have been reported for EPS generation and assist in the manufacturing of 
food and cosmetic items (Syal and Vohra 2013; Gientka et al., 2016; Yildiran 

et al., 2019). The probiotic yeast L. starkeyi VIT-MN03 produced six times as 

much EPS when kept in optimal circumstances utilising the Response surface 
approach. Probiotic EPS had a flat surface that was good for making films, and it 

was discovered to be a hetero-polysaccharide (Ragavan and Das, 2019). The 

highest EPS yield was noted for Candida guilliermondii and Candida famata after 
optimization of media which ranges from 0.505 and 0.321 129 mg/l respectively 

(Gientka et al., 2016). Dey et al. (2017) reported the probiotic EPS can be a 

substantial antimutagenic agent, as shown by its strong binding affinity to the 

mutagenic compound Glu-P-1. On the generation of EPS by probiotic yeasts, 

specifically Wickerhamomyces anomalus VIT-ASN01 (586.55 mg/l), S. cerevisiae 

VIT-ASN03 (446.88 mg/l), and Yarrowia lipolytica VIT-ASN04 (468.72 mg/l).  
Probiotic EPS also exhibited significant biosurfactant activity compared to xanthan 

gum. Additionally, probiotic yeast strains' biosurfactant activity lessens the 

colonization of harmful bacteria in the stomach (Ragavan and Das, 2019). Similar 
findings about their potential qualities were reported for P. kluyveri and S. 

cerevisiae (Yildiran et al., 2019). - -Glucan is a yeast by-product with a number 

of beneficial health effects. The cell walls of many eukaryotic species include a 
polymer of -(1,3)-D-glucose polysaccharides. S. cerevisiae's cell wall is composed 

of mannoproteins, -(1,3)-D-glucan, and -(1,6)-D-glucan. The activation of 

macrophages' non-specific immunological response and stimulation of cell growth 
are two ways that -glucan is known to have positive effects on health (Kang et al., 

2014). 

 

Production of Killer toxin 

 

Proteins known as killer toxins bind to particular receptors on the surface of 

particular microbes. The killer toxin production from yeast species has been well 

characterized in many studies to prevent spoilage of food products from pathogens 

(Mannazzu et al., 2019). Killer activity by probiotic yeast Kluyveromyces lactis 
VIT-MN02 against food-borne pathogens was reported at optimized conditions 

(pH 3 at 25°C with 0.5% NaCl) (Ragavan and Das, 2020a). According to reports, 

the yeast strains Kluyveromyces sp., W. saturnus, P. anomala, and Saccharomyces 
cerevisiae produced killer toxin that had similar killing effects on infections 

(Golubev, 2013). The killer toxin was discovered to be 22 kDa (K2), 18 kDa (K3), 
and 14 kDa (K4) in size. These findings revealed that probiotic yeasts could 

produce killer toxins to stop bacterial contamination during fermentation 

(Meneghin et al., 2010). The shelf life/quality of the food products is ensured by 
the antimicrobial protein made by the yeast Metschnikowia pulcherrima, which 

also dramatically decreased the spoiling of ready-to-cook ground beef patties 

(Bedir and Kuleaşan, 2021). It was discovered that the pathogenic yeast 
Filobasidiella neoformans was resistant to the killer toxin produced by 

Cryptococcus pinus VKM Y-2958 (Kulakovskaya et al., 2019).  The killer toxin 

activity of probiotic yeast strains from the species Dekkera spp, P. anomala, 
Candida tropicalis, Candida pintolopesii, and S. cerevisiae against Cryptococcus 

neoformans has been demonstrated (Dubash et al., 2010). 

 
Production of enzymes  

 

Screening for the production of enzymes is the most important criteria for selecting 
probiotic strain. The enzymes such as ß-glucuronidase, ß-glucosidase and N-

acetyl-ß-glucosaminidase are considered as harmful enzymes. These enzymes are 

associated with GIT diseases and have been reported in some studies. Therefore, 

care should be taken for selecting probiotic strain producing harmful enzymes.  On 

the other hand, some enzymes, such ß-galactosidases and -glucosidase, are said to 

benefit the host. In the treatment of lactose intolerance, ß-galactosidases have 

demonstrated strong activity. Another enzyme, α-glucosidase helps to digest 
polysaccharide compounds to exert its beneficial effects in the GIT (Aziz et al., 

2019). The probiotic yeasts viz. Cryptococcus gastricus, Leuconeurospora sp. 

produce cellulase enzyme which was reported by Carrasco et al. (2016). Catalase 
is an antioxidant enzyme that gives the first line of defence to the host system. The 

significant catalase activity observed in probiotic yeasts Y. lipolytica and S. 
cerevisiae was reported by Czech et al. (2020). Acute lymphoblastic leukaemia 

and Non-Hodgkin lymphoma (NHL) were two tumours that L-asparaginase was 

thought to be a promising chemotherapeutic drug to treat. By inhibiting the 
development of acrylamide, this enzyme also plays a significant function in the 

food sector in preserving the quality of food. Ragavan and Das (2020b) reported 

two probiotic yeast isolates which showed catalase and L-asparaginase activity. 
 

Production of antimicrobial substances  

 
Antimicrobial substances produced by probiotics are the best replacement for 

chemical preservatives which can improve the quality of food products. The 

probiotic yeast isolates showed remarkable antimicrobial activity against common 
pathogens (Ragavan and Das, 2017a). Probiotic yeast substantial antibiotic 

efficacy against common human infections such as Enterococcus faecalis, E. coli, 

S. typhimurium, Pseudomonas aeruginosa, and Listeria monocytogenes was 
demonstrated by S. cerevisiae and S. boulardii (Rajkowska et al., 2012). Another 

benefit of S. cerevisiae var. boulardii may be its antimicrobial properties and 

capacity to degrade mycotoxins such as ochratoxin A patulin, and aflatoxins, 
(Abdel-Kareem et al., 2019; Liu et al., 2020). Additionally, Staphylococcus 

aureus, Pseudomonas aeruginosa, E. coli and Bacillus cereus, growth is inhibited 

by antimicrobial peptides derived from S. cerevisiae var. boulardii (Naimah et al., 

2018). A typical food-borne infection that causes diarrhea is ETEC 

(Enterotoxigenic E. coli). The main pathogenicity of bacteria is the production of 

adhesins and enterotoxins. S. cerevisiae significantly reduced ETEC growth and 
toxin generation. The yeast also decreased bacterial adhesion to intestinal Caco-

2/TC7 cells. In addition, S. cerevisiae reduced the generation of interleukin-8 

which is produced by ETEC-infected intestinal cells (Roussel et al., 2018).  

 

Metabolites produced by probiotic yeasts 

 
Probiotics have a number of effects, including as preventing pathogen colonization 

or adhesion, generating metabolites, and modifying the immune system by creating 

immunoglobulin antibodies (Chugh and Kamal-Eldin, 2020). The development 
and establishment of advantageous microorganisms in the stomach may result in 

the production of thiamine, folate, propionic acid, folate, and vitamin B12 

(Piwowarek et al., 2018). B vitamins including B1, B2, B5, B6, B7, and B12 as 
well as ergosterol, which can be converted to vitamin D2, can all be found in 

probiotic yeasts. For vitamin B complex, S. cerevisiae Pichia membranaefaciens, 

Pichia fermentans, and were reported (Silva et al., 2011). Zinc, magnesium, 
phosphate, iron and absorption in vertebrates are encouraged by the group of fat-

soluble chemicals known as calciferol (vitamin D). In recent work, UV-B 

irradiation of S. cerevisiae was used to stimulate the conversion of yeast sterol to 
ergocalciferol for use as a dietary supplement (Amiri et al., 2019). Vitamin A is a 

necessary human vitamin that aids eyesight, reproduction, immune function, and 

skin health. Engineered probiotic yeast Saccharomyces cerevisiae was reported for 

synthesis of vitamin A (Sun et al., 2019).  

In order to stop dangerous microbe adhesion and invasion, probiotics can also 

change mucin development and the colon's barrier function. Successful probiotics, 
like S. boulardii, should be able to adhere to the intestinal mucous, whereas 

epithelial cells create mucin to prevent pathogenic bacteria from attaching to them 

(Edwards-Ingram et al., 2004). The amount of accessible pathogen binding sites 
is decreased as a result of S. boulardii's attachment to the mucus membrane. The 

infections' capacity to connect directly to intestinal receptors and continue with 
host invasion is constrained by this interaction. 

 

HEALTH BENEFITS RENDERED BY PROBIOTIC YEAST 

 

Probiotic yeast S. boulardii has various beneficial properties to maintain host 

health (Figure 2). Probiotic yeast strains were reported for their therapeutic 
properties to maintain gut microbiota from harsh environmental conditions as well 

as pathogen colonization (Table 2). By producing trophic polyamines or other 

enzymes, such as alkaline phosphatase, a-glucosidase, maltase-glucoamylase, 
lactase, and sucrose-isomaltase, probiotic yeast S. boulardii promotes improves 

nutritional absorption and enterocyte maturation (Moslehi-Jenabian et al., 2010). 

Other crucial advantages of probiotic yeasts include enhancing dietary intake, 
boosting the immune system, preventing GI illnesses, lowering blood cholesterol 

levels, and, most significantly, reducing the chance of colon cancer (Saber et al., 

2017). Key metabolic pathways that regulate metastasis, angiogenesis, 
inflammation, apoptosis, differentiation, and cell proliferation have been 
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demonstrated to interact with probiotics and their metabolites. Probiotics also 

affect the function of GI enzymes, prevent pre-cancerous lesions and suppress 

carcinogenic elements both in vitro and in vivo (Cousin et al., 2012; Kumar et 

al., 2013). One of the leading causes of cancer-related morbidity and mortality in 

people is colon cancer (Bocci et al., 2015). On Caco-2 cell line as opposed to IEC-

6 cell line, probiotic yeast showed considerable anticancer action. K. lactis VIT-
MN02, in particular, demonstrated 75% anticancer efficacy on Caco-2 cells. 

Therefore, K. lactis VIT-MN02, a probiotic yeast, can be utilized to lower the risk 

of colon cancer. Type 2 diabetes is linked to enzymes like -glucosidase and -
amylase. The enzyme -glucosidase is inhibited by K. lactis VIT-MN02 (Ragavan 

and Das, 2020b). Hyperglycemia and type 2 diabetes mellitus could both be 
avoided by inhibiting α-amylase activity (Ayyash et al., 2018). The α-amylase 

enzyme was inhibited by L. starkeyi VIT-MN03. As a result, this research 

demonstrated that the probiotic yeasts L. starkeyi VIT-MN03 and K. lactis VIT-
MN02 can be utilized to maintain or regulate blood sugar levels in humans.  

Another study found that S. cerevisiae stimulated liquefactive necrosis, and 

ischemia (coagulative), apoptosis, and tumor degeneration in Swiss albino mice 
with Ehrlich ascites carcinoma (EAC) (Ghoneum et al., 2008). The probiotic K. 

marxianus AS41 isolated from dairy products influences metabolic activity and 

has pro-apoptotic activity in epithelial cancer cells without affecting normal cells 
(Saber et al., 2017). By inhibiting the mTOR, JAK-1 and AKT-1 pathways, 

exopolysaccharides produced by Pichia kudriavzevii and Kluyveromyces 

marxianus cause apoptosis in many colon cancer cell lines (Saadat et al., 2020). 
In the treatment of colorectal cancer, probiotic yeasts such Metschnikowia, 

Hanseniaspora, Pichia, Debaryomyces, Candida, Kluyveromyces and S. cerevisiae 

var. boulardii may have anti-cancer characteristics (Sambrani et al., 2021). 
However, it must pass human clinical studies in order to be licenced. 

Yeast is a best model organism to investigate the antioxidant activities which has 

potential industrial applications (Meng et al., 2017). P. fermentans S. cerevisiae 
sp. and were found to have antioxidant properties, suggesting that probiotic yeasts 

can effectively reduce cellular damage caused by oxidative stress (Chen et al., 

2010; Hassan 2011; Sourabh et al., 2011). Probiotic yeast L. starkeyi VITMN03 
showed 76% DPPH activity (Ragavan and Das, 2020b) whereas 12 strains from 

S. cerevisiae showed only 42% DPPH activity (de Lima et al., 2017). Recently, 

highest antioxidant activity was observed by Prototheca wickerhamii 1885 (83%), 
whereas reference strain S. boulardii showed only 70% antioxidant activity 

(Ciafardini and Zullo, 2020). There are reports on probiotic mediated antioxidant 

activity namely, free radical scavenging activities and H2O2 induced stress in GIT 

which may prevent oxidative damage to maintain host health (Son et al., 2017; 

Tang et al., 2017). The probiotic yeast S. fibuligera VIT-MN04 showed more 

resistance to H2O2 up to 86% than other yeasts which could ensure the viability of 

probiotics during H2O2 induced stress conditions. Moreover, probiotic yeast K. 

lactis exhibited 70% hydroxyl radical scavenging activity (Ragavan and Das, 

2020b). 

 
Figure 2 Health benefits of probiotic yeast Saccharomyces boulardii 

 

 

Table 2 Therapeutic properties of probiotic yeasts 

Probiotic yeasts Therapeutic properties References 

Saccharomyces boulardii  Prevents Salmonella & E. coli infection  Buts et al., 2006 

 
Inhibition of toxin production by pathogens like V. cholerae, C. difficile and C. 

perfringens  
Czerucka et al., 2007 

 Inhibition of pro-inflammatory cytokine production Soyturk et al., 2012 

Candida krusei 
The killer toxin produced by yeast inhibited the growth of pathogenic bacteria such as 

S. Typhimurium, S. aureus and Bacillus cereus 
Ochigava et al., 2011 

Pichia rhodanensis, Pichia spartinae, 
Torulaspora delbrueckii, Kluyveromyces 

lactis and Pichia pastoris 

Production of antibodies and human membrane proteins Goncalves et al., 2013 

Pichia kudriavzevii RY55 
Mycoccins inhibited the growth of pathogens like Enterococcus faecalis, 
Klebsiella sp., S. aureus, 

Bajaj et al., 2013 

Saccharomyces boulardii 

H. pylori eradication 

(Neuraminidase from S. boulardii removes surface α(2,3)- linked Sialic acid, which is 
the substrate for H. pylori adhesion) 

Sakarya and Gunay 2014 

 Inhibition of chloride secretion during Rotavirus Diarrhea Buccigrossi et al., 2014 

 
Reduced Pro-inflammatory cytokines (IL-8 and TNFα) and increased anti-inflammatory 
cytokines (IL10) in blood 

Abbas et al., 2014 

 Reduced cholesterol and uric acid levels Costanza et al., 2015 

S. cerevisiae UFMG A-905 and S. 
boulardii  

Immunomodulatory properties through reduction of inflammation and IL-6, TNF-α, 
Interferon gamma (IFN- γ) and IL-10 production 

Palma et al., 2015 

Kluyveromyces marxianus & 
Metschnikowia gruessii 

Protection and maintenance of epithelial barrier integrity Smith et al., 2015 

Saccharomyces boulardii 

Reduced cecal tissue damage, TNFα protein expression, NF-κB phosphorylation and 

actin disruption 
 caused by C. difficile -associated infection 

Koon et al., 2016 

Saccharomyces cerevisiae Inhibition of tumor cell proliferation Sambrani et al., 2021 

Saccharomycopsis fibuligera VIT-MN04 
and Lipomyces starkeyi VIT-MN03 

Antagonistic activity against S. typhimurium demonstrated using intestinal cell lines Ragavan and Das 2020b 

S. cerevisiae and S. 

cerevisiae var. boulardii 

Production of vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, 

amphetamine and vitamin B6 to exert beneficial effects in host 
Datta et al., 2017 

Kluyveromyces marxianus PCH397 β-galactosidase-production enhances antioxidant activity Nag et al., 2022 

Saccharomyces 

cerevisiae and Kluyveromyces marxianus 

Antifungal activity against moulds species like A. flavus, A. niger, P. expansum, P. 

carneum, P. spinulosum and P. rubens 
Goktas et al., 2021 

 
CONCLUSION  

 

The benefits of probiotic yeasts isolated from various conventionally fermented 
foods as well as the potential use of these organisms in probiotic products have 

been studied by the scientific community. More than a decade has been passed on 

the exploration of the efficacy of probiotic yeast having therapeutic properties for 

human welfare. Extensive studies have been conducted to fill up the gap between 

what we know about the important activities of probiotic yeast towards the health 
benefits. More information has been covered in the field of yeast probiotics by 

exploiting accumulated knowledge underlying the novel characteristics and other 
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technological advances as discussed in this review. In order to ensure therapeutic 

advancement, safety, and the quality of highly consumed probiotic foods 

containing probiotic yeasts for food firms and human welfare, scientists can use 

this knowledge at the research and industrial level to re-engineer the goods. 
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