STUDY OF INHIBITION OF YEASTS, LACTIC AND ACETIC BACTERIA USING SILVER PARTICLES
DOI:
https://doi.org/10.15414/jmbfs.2021.10.4.581-585Keywords:
silver nanoparticles, colloidal silver, wine, yeast, lactic acid bacteria, acetic acid bacteriaAbstract
This paper deals with a study of the inhibition of microorganisms occurring in grape must and wine, using silver in the form of nanoparticles and colloidal solution. Pure cultures of yeasts Saccharomyces cerevisiae and Brettanomyces bruxellensis, lactic acid bacteria Lactobacillus brevis, Pediococcus damnsosus and acetic acid bacteria Acetobacter aceti and Gluconobacter oxydans were used for the experiments. Attention was primarily focused on monitoring changes in carbohydrate processing, namely glucose, fructose, sucrose, maltose, mannitol, galactose, trehalose, and ß-glucosidase activity. These biochemical determinations have shown limitations in carbohydrate processing, particularly sucrose in yeasts, and fructose, glucose and sucrose in bacteria. The effects of silver have also been observed in natural microflora found in grape must from Chardonnay and Hibernal. Colloidal silver at concentrations 40, 70 and 100 ppm and silver nanoparticles at concentrations 70, 150 and 250 ppm were used for inhibition. A plate method was used to determine the number of viable colonies. With an increasing concentration of applied substances, the growth of both yeasts and bacteria was strongly inhibited, as indicated by the numbers of colonies cultivated from the must. Yeast growth was inhibited by the lowest concentration – (70 ppm) by up to 72% and bacterial growth by up to 75.5%.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Klara Chvalinova, Radim Holesinsky, Lenka Sochorova, Mojmir Baron, Jiri Sochor
This work is licensed under a Creative Commons Attribution 4.0 International License.
All papers published in the Journal of Microbiology, Biotechnology and Food Sciences are published under a CC-BY licence (CC-BY 4.0). Published materials can be shared (copy and redistribute the material in any medium or format) and adapted (remix, transform, and build upon the material for any purpose, even commercially) with specifying the author(s).